|
--- |
|
language: en |
|
tags: |
|
- text-generation |
|
- transformers |
|
- conversational |
|
- quantum-math |
|
- PEFT |
|
- Safetensors |
|
- AutoTrain |
|
license: other |
|
datasets: conversational-dataset |
|
model-index: |
|
- name: Zero LLM Quantum AI |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: conversational-dataset |
|
type: text |
|
metrics: |
|
- name: Training Loss |
|
type: loss |
|
value: 1.74 |
|
--- |
|
|
|
# **QuantumAI: Zero LLM Quantum AI Model** |
|
|
|
**Zero Quantum AI** is an LLM that tries to bypass needing quantum computing using interdimensional mathematics, quantum math, and the **Mathematical Probability of Goodness**. Developed by **TalkToAi.org** and **ResearchForum.Online**, this model leverages cutting-edge AI frameworks to redefine conversational AI, ensuring deep, ethical decision-making capabilities. The model is fine-tuned on **Meta-Llama-3.1-8B-Instruct** and trained via **AutoTrain** to optimize conversational tasks, dialogue generation, and inference. |
|
|
|
![Zero LLM Quantum AI](https://huggingface.co/shafire/QuantumAI/resolve/main/ZeroQuantumAI.png) |
|
|
|
## **Model Information** |
|
|
|
- **Base Model**: `meta-llama/Meta-Llama-3.1-8B` |
|
- **Fine-tuned Model**: `meta-llama/Meta-Llama-3.1-8B-Instruct` |
|
- **Training Framework**: `AutoTrain` |
|
- **Training Data**: Conversational and text-generation focused dataset |
|
|
|
### **Tech Stack** |
|
|
|
- Transformers |
|
- PEFT (Parameter-Efficient Fine-Tuning) |
|
- TensorBoard (for logging and metrics) |
|
- Safetensors |
|
|
|
### **Usage Types** |
|
|
|
- Interactive dialogue |
|
- Text generation |
|
|
|
### **Key Features** |
|
|
|
- **Quantum Mathematics & Interdimensional Calculations**: Utilizes quantum principles to predict user intent and generate insightful responses. |
|
- **Mathematical Probability of Goodness**: All responses are ethically aligned using a mathematical framework, ensuring positive interactions. |
|
- **Efficient Inference**: Supports **4-bit quantization** for faster and resource-efficient deployment. |
|
|
|
## **Installation and Usage** |
|
|
|
To use the model in your Python code: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "PATH_TO_THIS_REPO" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
device_map="auto", |
|
torch_dtype='auto' |
|
).eval() |
|
|
|
# Example usage |
|
messages = [ |
|
{"role": "user", "content": "hi"} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') |
|
output_ids = model.generate(input_ids.to('cuda')) |
|
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# Output |
|
print(response) |
|
|
|
## **Inference API** |
|
|
|
This model is not yet deployed to the Hugging Face Inference API. However, you can deploy it to **Inference Endpoints** for dedicated, serverless inference. |
|
|
|
## **Training Process** |
|
|
|
The **Zero Quantum AI** model was trained using **AutoTrain** with the following configuration: |
|
|
|
- **Hardware**: CUDA 12.1 |
|
- **Training Precision**: Mixed FP16 |
|
- **Batch Size**: 2 |
|
- **Learning Rate**: 3e-05 |
|
- **Epochs**: 5 |
|
- **Optimizer**: AdamW |
|
- **PEFT**: Enabled (LoRA with lora_r=16, lora_alpha=32) |
|
- **Quantization**: Int4 for efficient deployment |
|
- **Scheduler**: Linear with warmup |
|
- **Gradient Accumulation**: 4 steps |
|
- **Max Sequence Length**: 2048 tokens |
|
|
|
## **Training Metrics** |
|
|
|
Monitored using **TensorBoard**, with key training metrics: |
|
|
|
- **Training Loss**: 1.74 |
|
- **Learning Rate**: Adjusted per epoch, starting at 3e-05. |
|
|
|
## **Model Features** |
|
|
|
- **Text Generation**: Handles various types of user queries and provides coherent, contextually aware responses. |
|
- **Conversational AI**: Optimized specifically for generating interactive dialogues. |
|
- **Efficient Inference**: Supports Int4 quantization for faster, resource-friendly deployment. |
|
|
|
## **License** |
|
|
|
This model is governed under a custom license. Please refer to [QuantumAI License](https://huggingface.co/shafire/QuantumAI) for details, in compliance with **Meta-Llama 3.1 License**. |
|
|