YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
A Multi-task learning model with two prediction heads
- One prediction head classifies between keyword sentences vs statements/questions
- Other prediction head corresponds to classifier for statements vs questions
Scores
Spaadia SQuaD Test acc: 0.9891
Quora Keyword Pairs Test acc: 0.98048
Datasets:
Quora Keyword Pairs: https://www.kaggle.com/stefanondisponibile/quora-question-keyword-pairs Spaadia SQuaD pairs: https://www.kaggle.com/shahrukhkhan/questions-vs-statementsclassificationdataset
Article
Demo Notebook
Colab Notebook Multi-task Query classifiers
Clone the model repo
git clone https://huggingface.co/shahrukhx01/bert-multitask-query-classifiers
%cd bert-multitask-query-classifiers/
Load model
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
Run inference on both Tasks
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
## Keyword vs Statement/Question Classifier
input = ["keyword query", "is this a keyword query?"]
task_name="quora_keyword_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
## Statement vs Question Classifier
input = ["where is berlin?", "is this a keyword query?", "Berlin is in Germany."]
task_name="spaadia_squad_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.