GPT2 for Code AutoComplete Model

code-autocomplete, a code completion plugin for Python.

code-autocomplete can automatically complete the code of lines and blocks with GPT2.

Usage

Open source repo:code-autocomplete,support GPT2 model, usage:

from autocomplete.gpt2_coder import GPT2Coder

m = GPT2Coder("shibing624/code-autocomplete-gpt2-base")
print(m.generate('import torch.nn as')[0])

Also, use huggingface/transformers:

Please use 'GPT2' related functions to load this model!

import os
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = GPT2Tokenizer.from_pretrained("shibing624/code-autocomplete-gpt2-base")
model = GPT2LMHeadModel.from_pretrained("shibing624/code-autocomplete-gpt2-base")
model.to(device)
prompts = [
    """from torch import nn
    class LSTM(Module):
        def __init__(self, *,
                     n_tokens: int,
                     embedding_size: int,
                     hidden_size: int,
                     n_layers: int):""",
    """import numpy as np
    import torch
    import torch.nn as""",
    "import java.util.ArrayList",
    "def factorial(n):",
]
for prompt in prompts:
    input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt').to(device)
    outputs = model.generate(input_ids=input_ids,
                             max_length=64 + len(prompt),
                             temperature=1.0,
                             top_k=50,
                             top_p=0.95,
                             repetition_penalty=1.0,
                             do_sample=True,
                             num_return_sequences=1,
                             length_penalty=2.0,
                             early_stopping=True)
    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print(decoded)
    print("=" * 20)

output: ```shell from torch import nn class LSTM(Module): def init(self, *, n_tokens: int, embedding_size: int, hidden_size: int, n_layers: int): self.embedding_size = embedding_size

import numpy as np import torch import torch.nn as nn import torch.nn.functional as F


Model files:

code-autocomplete-gpt2-base ├── config.json ├── merges.txt ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.json


### Train data
#### pytorch_awesome projects source code

download [code-autocomplete](https://github.com/shibing624/code-autocomplete),
```shell
cd autocomplete
python create_dataset.py

If you want train code-autocomplete GPT2 model,refer https://github.com/shibing624/code-autocomplete/blob/main/autocomplete/gpt2_coder.py

About GPT2

Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large

Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page.

Disclaimer: The team releasing GPT-2 also wrote a model card for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.

Citation

@misc{code-autocomplete,
  author = {Xu Ming},
  title = {code-autocomplete: Code AutoComplete with GPT model},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  url = {https://github.com/shibing624/code-autocomplete},
}
Downloads last month
127
Safetensors
Model size
137M params
Tensor type
F32
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shibing624/code-autocomplete-gpt2-base

Quantizations
1 model