Whisper Small 3000 Names SSD superU

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1550
  • Wer: 38.3523

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6702 0.2392 100 0.5894 64.7727
0.4536 0.4785 200 0.4488 55.3977
0.4115 0.7177 300 0.4097 50.2841
0.3396 0.9569 400 0.3204 45.7386
0.2729 1.1962 500 0.3147 44.3182
0.2448 1.4354 600 0.3061 45.4545
0.2398 1.6746 700 0.2533 44.6023
0.2017 1.9139 800 0.2488 45.7386
0.1189 2.1531 900 0.2282 43.1818
0.1214 2.3923 1000 0.2319 43.1818
0.1156 2.6316 1100 0.2012 41.4773
0.1031 2.8708 1200 0.1863 42.3295
0.0704 3.1100 1300 0.1746 38.9205
0.0796 3.3493 1400 0.1622 40.0568
0.0868 3.5885 1500 0.1624 39.7727
0.075 3.8278 1600 0.1620 39.7727
0.0423 4.0670 1700 0.1543 37.7841
0.0458 4.3062 1800 0.1507 38.6364
0.0378 4.5455 1900 0.1530 38.0682
0.0379 4.7847 2000 0.1550 38.3523

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.2.2+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
42
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for shreyasdesaisuperU/whisper-small-names-3000

Finetuned
(2241)
this model