mbart-large-50-many-to-many-mmt-finetuned-en-to-hi

This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7540
  • Bleu: 9.5451
  • Gen Len: 6.3699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
3.2113 0.0 500 2.8535 4.975 6.0562
2.8197 0.01 1000 2.6902 3.2399 6.2449
2.6595 0.01 1500 2.6256 1.2488 6.5596
2.679 0.01 2000 2.5394 4.8497 6.1644
2.5408 0.02 2500 2.4751 2.294 6.3051
2.4689 0.02 3000 2.4052 3.6526 6.3714
2.4299 0.02 3500 2.3642 3.4783 6.4584
2.4303 0.02 4000 2.3545 4.9837 6.343
2.3715 0.03 4500 2.3138 5.3665 6.1981
2.3354 0.03 5000 2.3002 5.8659 6.109
2.3734 0.03 5500 2.2877 3.8468 6.443
2.2968 0.04 6000 2.2385 3.1561 6.4381
2.272 0.04 6500 2.2269 5.7378 6.1155
2.2691 0.04 7000 2.2244 7.8318 6.2325
2.2333 0.05 7500 2.1973 5.4549 6.1463
2.2518 0.05 8000 2.1996 2.3346 6.4954
2.251 0.05 8500 2.1682 4.7228 6.4063
2.252 0.06 9000 2.2211 5.7043 6.3745
2.288 0.06 9500 2.2017 3.7285 6.4893
2.2443 0.06 10000 2.1300 7.0869 6.4448
2.1723 0.06 10500 2.1076 4.3789 6.3482
2.1371 0.07 11000 2.1024 4.2024 6.547
2.1206 0.07 11500 2.1045 7.2662 6.1786
2.1325 0.07 12000 2.0903 3.8746 6.344
2.1315 0.08 12500 2.0817 5.9713 6.4415
2.1285 0.08 13000 2.0637 7.7832 6.1534
2.1223 0.08 13500 2.0522 2.9569 6.313
2.1036 0.09 14000 2.0505 5.0732 6.3308
2.1053 0.09 14500 2.0288 6.2772 6.1638
2.1122 0.09 15000 2.0232 6.8311 6.2005
2.0566 0.1 15500 2.0175 5.8541 6.1907
2.0783 0.1 16000 2.0147 10.0926 6.1531
2.0775 0.1 16500 2.0128 7.6705 6.2624
2.0952 0.1 17000 1.9951 5.5904 6.2104
2.115 0.11 17500 1.9806 8.0092 6.2081
2.0515 0.11 18000 1.9769 5.9444 6.2055
2.0698 0.11 18500 1.9611 8.6585 6.2591
2.0521 0.12 19000 1.9715 9.1678 6.2758
2.0581 0.12 19500 1.9538 7.0038 6.2019
2.0073 0.12 20000 1.9502 7.6102 6.3093
2.0104 0.13 20500 1.9414 7.7584 6.1554
2.0163 0.13 21000 1.9404 5.8758 6.3561
2.03 0.13 21500 1.9294 6.9283 6.1343
1.9915 0.14 22000 1.9159 5.6757 6.2349
2.0158 0.14 22500 1.9234 7.5094 6.1197
1.9616 0.14 23000 1.9170 9.4006 6.2105
1.9954 0.14 23500 1.9008 2.9622 6.2355
2.0116 0.15 24000 1.9026 11.0333 6.0291
1.9742 0.15 24500 1.8973 4.504 6.3386
1.9805 0.15 25000 1.8955 3.8655 6.2335
1.9413 0.16 25500 1.8821 8.9818 6.1769
1.9311 0.16 26000 1.8851 6.7291 6.0846
1.9696 0.16 26500 1.8789 12.1041 6.1274
1.9419 0.17 27000 1.8687 7.2389 6.2407
1.959 0.17 27500 1.8688 7.984 6.3319
1.9449 0.17 28000 1.8655 6.7646 6.2376
1.961 0.18 28500 1.8541 9.8683 6.2369
1.9293 0.18 29000 1.8676 8.2689 6.0779
1.978 0.18 29500 1.8515 5.7599 6.1964
1.9121 0.18 30000 1.8508 7.8691 6.19
1.9566 0.19 30500 1.8350 7.7093 6.1696
1.9279 0.19 31000 1.8455 7.2261 6.2585
1.9717 0.19 31500 1.8374 8.7243 6.2427
1.9215 0.2 32000 1.8239 3.5888 6.242
1.937 0.2 32500 1.8352 3.352 6.2681
1.9103 0.2 33000 1.8260 7.5665 6.2443
1.9363 0.21 33500 1.8122 8.6132 6.1723
1.8938 0.21 34000 1.8175 8.49 6.3157
1.8869 0.21 34500 1.8156 7.8958 6.3069
1.9113 0.22 35000 1.8083 5.658 6.2682
1.9175 0.22 35500 1.8012 9.5439 6.3022
1.9283 0.22 36000 1.8032 9.1064 6.3756
1.9227 0.22 36500 1.7899 8.7293 6.2953
1.9129 0.23 37000 1.7822 4.2586 6.2276
1.8733 0.23 37500 1.7789 9.1095 6.2261
1.8986 0.23 38000 1.7831 4.853 6.2544
1.8655 0.24 38500 1.7762 7.4264 6.3151
1.8996 0.24 39000 1.7648 7.4422 6.3657
1.8771 0.24 39500 1.7690 12.3696 6.1305
1.8719 0.25 40000 1.7565 10.0389 6.2719
1.8993 0.25 40500 1.7481 14.4891 6.2271
1.8756 0.25 41000 1.7516 7.2393 6.2737
1.8195 0.26 41500 1.7534 9.0375 6.2557
1.8384 0.26 42000 1.7540 9.5451 6.3699

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
611M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shubhambhawsar/mbart-large-50-many-to-many-mmt-finetuned-en-to-hi

Finetuned
(117)
this model