Quantization
Collection
A collection of quantized models. All the models can be fine-tuned by adding a LoRA Adapter.
•
84 items
•
Updated
•
3
Original Base Model: CohereForAI/c4ai-command-r-v01
.
Link: https://huggingface.co/CohereForAI/c4ai-command-r-v01
(1) Please note the model is quantized by utilizing the AutoModelForCausalLM.from_pretrained
in the transformers
package.
(2) For the model quantized by auto-gptq
package, please check the link here: https://huggingface.co/shuyuej/Command-R-GPTQ.
(3) This model is a smaller one by setting group_size=1024
.
"quantization_config": {
"batch_size": 1,
"bits": 4,
"block_name_to_quantize": null,
"cache_block_outputs": true,
"damp_percent": 0.1,
"dataset": null,
"desc_act": false,
"exllama_config": {
"version": 1
},
"group_size": 1024,
"max_input_length": null,
"model_seqlen": null,
"module_name_preceding_first_block": null,
"modules_in_block_to_quantize": null,
"pad_token_id": null,
"quant_method": "gptq",
"sym": true,
"tokenizer": null,
"true_sequential": true,
"use_cuda_fp16": false,
"use_exllama": true
},
Source Codes: https://github.com/vkola-lab/medpodgpt/tree/main/quantization.