gemma-7b-orpo / README.md
silviasapora's picture
End of training
c818b7c verified
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - alignment-handbook
  - trl
  - orpo
  - generated_from_trainer
  - trl
  - orpo
  - alignment-handbook
  - generated_from_trainer
datasets:
  - argilla/dpo-mix-7k
model-index:
  - name: gemma-7b-orpo
    results: []

gemma-7b-orpo

This model is a fine-tuned version of google/gemma-7b on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7559
  • Rewards/chosen: -0.0650
  • Rewards/rejected: -0.0764
  • Rewards/accuracies: 0.5971
  • Rewards/margins: 0.0114
  • Logps/rejected: -1.5282
  • Logps/chosen: -1.3004
  • Logits/rejected: 266.0260
  • Logits/chosen: 295.6202
  • Nll Loss: 1.6941
  • Log Odds Ratio: -0.6992
  • Log Odds Chosen: 0.3721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.3309 1.0 1259 1.4432 -0.0513 -0.0583 0.5468 0.0071 -1.1666 -1.0254 310.9833 338.2715 1.3964 -0.7034 0.2119
0.647 2.0 2518 1.4816 -0.0529 -0.0637 0.5899 0.0108 -1.2742 -1.0583 296.0398 324.3109 1.4304 -0.6778 0.3416
0.348 3.0 3777 1.7559 -0.0650 -0.0764 0.5971 0.0114 -1.5282 -1.3004 266.0260 295.6202 1.6941 -0.6992 0.3721

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1