metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
- trl
- orpo
- alignment-handbook
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
model-index:
- name: gemma-7b-orpo
results: []
gemma-7b-orpo
This model is a fine-tuned version of google/gemma-7b on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set:
- Loss: 1.7559
- Rewards/chosen: -0.0650
- Rewards/rejected: -0.0764
- Rewards/accuracies: 0.5971
- Rewards/margins: 0.0114
- Logps/rejected: -1.5282
- Logps/chosen: -1.3004
- Logits/rejected: 266.0260
- Logits/chosen: 295.6202
- Nll Loss: 1.6941
- Log Odds Ratio: -0.6992
- Log Odds Chosen: 0.3721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3309 | 1.0 | 1259 | 1.4432 | -0.0513 | -0.0583 | 0.5468 | 0.0071 | -1.1666 | -1.0254 | 310.9833 | 338.2715 | 1.3964 | -0.7034 | 0.2119 |
0.647 | 2.0 | 2518 | 1.4816 | -0.0529 | -0.0637 | 0.5899 | 0.0108 | -1.2742 | -1.0583 | 296.0398 | 324.3109 | 1.4304 | -0.6778 | 0.3416 |
0.348 | 3.0 | 3777 | 1.7559 | -0.0650 | -0.0764 | 0.5971 | 0.0114 | -1.5282 | -1.3004 | 266.0260 | 295.6202 | 1.6941 | -0.6992 | 0.3721 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1