simonycl's picture
Upload folder using huggingface_hub
7853866 verified
metadata
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - >-
    simonycl/Meta-Llama-3-8B-Instruct_ultrafeedback-Meta-Llama-3-8B-Instruct-annotate-start-0-end-1.0-judge-5
model-index:
  - name: llama-3-8b-instruct-agg-judge
    results: []

llama-3-8b-instruct-agg-judge

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the simonycl/Meta-Llama-3-8B-Instruct_ultrafeedback-Meta-Llama-3-8B-Instruct-annotate-start-0-end-1.0-judge-5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6390
  • Rewards/chosen: -1.0532
  • Rewards/rejected: -1.3037
  • Rewards/accuracies: 0.6057
  • Rewards/margins: 0.2506
  • Logps/rejected: -280.7787
  • Logps/chosen: -256.8969
  • Logits/rejected: -1.4905
  • Logits/chosen: -1.5260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6265 0.4264 400 0.6455 -0.7831 -0.9487 0.6504 0.1655 -245.2767 -229.8961 -1.3679 -1.4091
0.6053 0.8529 800 0.6390 -1.0532 -1.3037 0.6057 0.2506 -280.7787 -256.8969 -1.4905 -1.5260

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0