hanasim's picture
End of training
1566692 verified
metadata
language:
  - id
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_16_0
  - mms
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: breeze-listen-w2v2-id
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - ID
          type: common_voice_16_0
          config: id
          split: test
          args: 'Config: id, Training split: train+validation, Eval split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.145808188654721

breeze-listen-w2v2-id

This model is a fine-tuned version of facebook/mms-1b-all on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - ID dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1253
  • Wer: 0.1458

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.1 200 3.2671 1.0
No log 0.19 400 2.8741 1.0007
3.8381 0.29 600 2.7612 0.9955
3.8381 0.38 800 2.6333 0.9981
2.6996 0.48 1000 2.3074 0.9771
2.6996 0.58 1200 2.0155 0.9286
2.6996 0.67 1400 1.9155 0.8947
2.2919 0.77 1600 1.6412 0.8814
2.2919 0.87 1800 1.4531 0.8285
1.5872 0.96 2000 0.1813 0.2060
1.5872 1.06 2200 0.1636 0.1806
1.5872 1.15 2400 0.1558 0.1744
0.2659 1.25 2600 0.1522 0.1647
0.2659 1.35 2800 0.1553 0.1664
0.2436 1.44 3000 0.1841 0.1961
0.2436 1.54 3200 0.1419 0.1640
0.2436 1.64 3400 0.1456 0.1714
0.2464 1.73 3600 0.1402 0.1607
0.2464 1.83 3800 0.1345 0.1528
0.2292 1.92 4000 0.1342 0.1556
0.2292 2.02 4200 0.1334 0.1552
0.2292 2.12 4400 0.1352 0.1543
0.2209 2.21 4600 0.1350 0.1538
0.2209 2.31 4800 0.1342 0.1530
0.2136 2.41 5000 0.1320 0.1540
0.2136 2.5 5200 0.1369 0.1569
0.2136 2.6 5400 0.1314 0.1517
0.2154 2.69 5600 0.1304 0.1506
0.2154 2.79 5800 0.1320 0.1507
0.2123 2.89 6000 0.1319 0.1524
0.2123 2.98 6200 0.1292 0.1524
0.2123 3.08 6400 0.1283 0.1488
0.2109 3.18 6600 0.1258 0.1492
0.2109 3.27 6800 0.1291 0.1488
0.2103 3.37 7000 0.1278 0.1484
0.2103 3.46 7200 0.1250 0.1478
0.2103 3.56 7400 0.1277 0.1482
0.1986 3.66 7600 0.1256 0.1476
0.1986 3.75 7800 0.1258 0.1468
0.1954 3.85 8000 0.1256 0.1465
0.1954 3.95 8200 0.1253 0.1456

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1