llm3br64
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the reliance-oneshot-train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0583 | 0.1786 | 5 | 0.0538 |
0.0323 | 0.3571 | 10 | 0.0369 |
0.0292 | 0.5357 | 15 | 0.0307 |
0.0292 | 0.7143 | 20 | 0.0260 |
0.0229 | 0.8929 | 25 | 0.0236 |
0.0201 | 1.0714 | 30 | 0.0216 |
0.0177 | 1.25 | 35 | 0.0200 |
0.0198 | 1.4286 | 40 | 0.0187 |
0.014 | 1.6071 | 45 | 0.0177 |
0.0157 | 1.7857 | 50 | 0.0171 |
0.0117 | 1.9643 | 55 | 0.0164 |
0.0139 | 2.1429 | 60 | 0.0161 |
0.0116 | 2.3214 | 65 | 0.0156 |
0.0115 | 2.5 | 70 | 0.0149 |
0.0105 | 2.6786 | 75 | 0.0144 |
0.0127 | 2.8571 | 80 | 0.0143 |
0.0079 | 3.0357 | 85 | 0.0140 |
0.009 | 3.2143 | 90 | 0.0141 |
0.0082 | 3.3929 | 95 | 0.0137 |
0.0085 | 3.5714 | 100 | 0.0132 |
0.0087 | 3.75 | 105 | 0.0133 |
0.009 | 3.9286 | 110 | 0.0131 |
0.0079 | 4.1071 | 115 | 0.0129 |
0.0084 | 4.2857 | 120 | 0.0127 |
0.0071 | 4.4643 | 125 | 0.0127 |
0.0073 | 4.6429 | 130 | 0.0126 |
0.007 | 4.8214 | 135 | 0.0123 |
0.0063 | 5.0 | 140 | 0.0123 |
0.0051 | 5.1786 | 145 | 0.0127 |
0.0054 | 5.3571 | 150 | 0.0131 |
0.0056 | 5.5357 | 155 | 0.0125 |
0.0056 | 5.7143 | 160 | 0.0123 |
0.0059 | 5.8929 | 165 | 0.0123 |
0.004 | 6.0714 | 170 | 0.0129 |
0.0044 | 6.25 | 175 | 0.0128 |
0.0039 | 6.4286 | 180 | 0.0124 |
0.0045 | 6.6071 | 185 | 0.0124 |
0.0041 | 6.7857 | 190 | 0.0125 |
0.0037 | 6.9643 | 195 | 0.0121 |
0.0026 | 7.1429 | 200 | 0.0131 |
0.0027 | 7.3214 | 205 | 0.0132 |
0.003 | 7.5 | 210 | 0.0128 |
0.0033 | 7.6786 | 215 | 0.0125 |
0.0032 | 7.8571 | 220 | 0.0120 |
0.0018 | 8.0357 | 225 | 0.0126 |
0.0024 | 8.2143 | 230 | 0.0141 |
0.002 | 8.3929 | 235 | 0.0131 |
0.0022 | 8.5714 | 240 | 0.0127 |
0.0016 | 8.75 | 245 | 0.0131 |
0.0016 | 8.9286 | 250 | 0.0133 |
0.0011 | 9.1071 | 255 | 0.0135 |
0.0018 | 9.2857 | 260 | 0.0138 |
0.0011 | 9.4643 | 265 | 0.0140 |
0.001 | 9.6429 | 270 | 0.0141 |
0.0011 | 9.8214 | 275 | 0.0142 |
0.0012 | 10.0 | 280 | 0.0141 |
0.0006 | 10.1786 | 285 | 0.0142 |
0.0008 | 10.3571 | 290 | 0.0152 |
0.0006 | 10.5357 | 295 | 0.0156 |
0.0005 | 10.7143 | 300 | 0.0155 |
0.0006 | 10.8929 | 305 | 0.0151 |
0.0004 | 11.0714 | 310 | 0.0152 |
0.0004 | 11.25 | 315 | 0.0157 |
0.0003 | 11.4286 | 320 | 0.0164 |
0.0003 | 11.6071 | 325 | 0.0167 |
0.0004 | 11.7857 | 330 | 0.0166 |
0.0003 | 11.9643 | 335 | 0.0165 |
0.0001 | 12.1429 | 340 | 0.0165 |
0.0001 | 12.3214 | 345 | 0.0167 |
0.0001 | 12.5 | 350 | 0.0169 |
0.0001 | 12.6786 | 355 | 0.0171 |
0.0002 | 12.8571 | 360 | 0.0173 |
0.0001 | 13.0357 | 365 | 0.0173 |
0.0001 | 13.2143 | 370 | 0.0174 |
0.0001 | 13.3929 | 375 | 0.0174 |
0.0001 | 13.5714 | 380 | 0.0174 |
0.0001 | 13.75 | 385 | 0.0175 |
0.0001 | 13.9286 | 390 | 0.0175 |
0.0001 | 14.1071 | 395 | 0.0175 |
0.0001 | 14.2857 | 400 | 0.0176 |
0.0001 | 14.4643 | 405 | 0.0176 |
0.0001 | 14.6429 | 410 | 0.0176 |
0.0001 | 14.8214 | 415 | 0.0176 |
0.0001 | 15.0 | 420 | 0.0176 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for sizhkhy/reliance-llama-3.2-3B-lora-r64
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct