llm3br64

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the reliance-oneshot-train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0131

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss
0.0583 0.1786 5 0.0538
0.0323 0.3571 10 0.0369
0.0292 0.5357 15 0.0307
0.0292 0.7143 20 0.0260
0.0229 0.8929 25 0.0236
0.0201 1.0714 30 0.0216
0.0177 1.25 35 0.0200
0.0198 1.4286 40 0.0187
0.014 1.6071 45 0.0177
0.0157 1.7857 50 0.0171
0.0117 1.9643 55 0.0164
0.0139 2.1429 60 0.0161
0.0116 2.3214 65 0.0156
0.0115 2.5 70 0.0149
0.0105 2.6786 75 0.0144
0.0127 2.8571 80 0.0143
0.0079 3.0357 85 0.0140
0.009 3.2143 90 0.0141
0.0082 3.3929 95 0.0137
0.0085 3.5714 100 0.0132
0.0087 3.75 105 0.0133
0.009 3.9286 110 0.0131
0.0079 4.1071 115 0.0129
0.0084 4.2857 120 0.0127
0.0071 4.4643 125 0.0127
0.0073 4.6429 130 0.0126
0.007 4.8214 135 0.0123
0.0063 5.0 140 0.0123
0.0051 5.1786 145 0.0127
0.0054 5.3571 150 0.0131
0.0056 5.5357 155 0.0125
0.0056 5.7143 160 0.0123
0.0059 5.8929 165 0.0123
0.004 6.0714 170 0.0129
0.0044 6.25 175 0.0128
0.0039 6.4286 180 0.0124
0.0045 6.6071 185 0.0124
0.0041 6.7857 190 0.0125
0.0037 6.9643 195 0.0121
0.0026 7.1429 200 0.0131
0.0027 7.3214 205 0.0132
0.003 7.5 210 0.0128
0.0033 7.6786 215 0.0125
0.0032 7.8571 220 0.0120
0.0018 8.0357 225 0.0126
0.0024 8.2143 230 0.0141
0.002 8.3929 235 0.0131
0.0022 8.5714 240 0.0127
0.0016 8.75 245 0.0131
0.0016 8.9286 250 0.0133
0.0011 9.1071 255 0.0135
0.0018 9.2857 260 0.0138
0.0011 9.4643 265 0.0140
0.001 9.6429 270 0.0141
0.0011 9.8214 275 0.0142
0.0012 10.0 280 0.0141
0.0006 10.1786 285 0.0142
0.0008 10.3571 290 0.0152
0.0006 10.5357 295 0.0156
0.0005 10.7143 300 0.0155
0.0006 10.8929 305 0.0151
0.0004 11.0714 310 0.0152
0.0004 11.25 315 0.0157
0.0003 11.4286 320 0.0164
0.0003 11.6071 325 0.0167
0.0004 11.7857 330 0.0166
0.0003 11.9643 335 0.0165
0.0001 12.1429 340 0.0165
0.0001 12.3214 345 0.0167
0.0001 12.5 350 0.0169
0.0001 12.6786 355 0.0171
0.0002 12.8571 360 0.0173
0.0001 13.0357 365 0.0173
0.0001 13.2143 370 0.0174
0.0001 13.3929 375 0.0174
0.0001 13.5714 380 0.0174
0.0001 13.75 385 0.0175
0.0001 13.9286 390 0.0175
0.0001 14.1071 395 0.0175
0.0001 14.2857 400 0.0176
0.0001 14.4643 405 0.0176
0.0001 14.6429 410 0.0176
0.0001 14.8214 415 0.0176
0.0001 15.0 420 0.0176

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sizhkhy/reliance-llama-3.2-3B-lora-r64

Adapter
(228)
this model