llm3br256
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the relianceV2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0118
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0395 | 0.2424 | 5 | 0.0433 |
0.0324 | 0.4848 | 10 | 0.0300 |
0.024 | 0.7273 | 15 | 0.0244 |
0.0189 | 0.9697 | 20 | 0.0212 |
0.0171 | 1.2303 | 25 | 0.0190 |
0.0146 | 1.4727 | 30 | 0.0173 |
0.0144 | 1.7152 | 35 | 0.0161 |
0.0104 | 1.9576 | 40 | 0.0155 |
0.0143 | 2.2182 | 45 | 0.0152 |
0.0117 | 2.4606 | 50 | 0.0141 |
0.015 | 2.7030 | 55 | 0.0136 |
0.0092 | 2.9455 | 60 | 0.0131 |
0.008 | 3.2061 | 65 | 0.0127 |
0.0109 | 3.4485 | 70 | 0.0125 |
0.0085 | 3.6909 | 75 | 0.0122 |
0.0089 | 3.9333 | 80 | 0.0120 |
0.0074 | 4.1939 | 85 | 0.0118 |
0.0074 | 4.4364 | 90 | 0.0118 |
0.0066 | 4.6788 | 95 | 0.0118 |
0.0065 | 4.9212 | 100 | 0.0118 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Model tree for sizhkhy/relianceV2
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct