qlora-ner
This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0891
- Precision: 0.8733
- Recall: 0.8884
- F1: 0.8808
- Accuracy: 0.9757
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 220 | 0.0790 | 0.8662 | 0.8812 | 0.8736 | 0.9755 |
No log | 2.0 | 440 | 0.0624 | 0.9047 | 0.9118 | 0.9082 | 0.9815 |
0.1243 | 3.0 | 660 | 0.0572 | 0.9102 | 0.9243 | 0.9172 | 0.9826 |
0.1243 | 4.0 | 880 | 0.0565 | 0.9036 | 0.9284 | 0.9159 | 0.9824 |
0.0615 | 5.0 | 1100 | 0.0545 | 0.9134 | 0.9305 | 0.9219 | 0.9835 |
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 9
Model tree for skshmjn/qlora-ner
Base model
google-bert/bert-base-uncased