qlora-ner

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0891
  • Precision: 0.8733
  • Recall: 0.8884
  • F1: 0.8808
  • Accuracy: 0.9757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 220 0.0790 0.8662 0.8812 0.8736 0.9755
No log 2.0 440 0.0624 0.9047 0.9118 0.9082 0.9815
0.1243 3.0 660 0.0572 0.9102 0.9243 0.9172 0.9826
0.1243 4.0 880 0.0565 0.9036 0.9284 0.9159 0.9824
0.0615 5.0 1100 0.0545 0.9134 0.9305 0.9219 0.9835

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for skshmjn/qlora-ner

Adapter
(59)
this model

Dataset used to train skshmjn/qlora-ner