MobileNetV2-KD-VGGFace

This model is trained via KD from ViT on first 50k samples of VGGFace dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4919
  • Accuracy: 0.7836

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7506 1.0 1667 2.2449 0.0726
2.105 2.0 3334 1.6904 0.2493
1.6544 3.0 5001 1.3206 0.4043
1.3357 4.0 6668 1.0675 0.5078
1.1104 5.0 8335 0.9302 0.5582
0.9287 6.0 10002 0.8738 0.5972
0.7899 7.0 11669 0.7972 0.6388
0.6738 8.0 13336 0.7074 0.6822
0.5803 9.0 15003 0.6630 0.7009
0.5038 10.0 16670 0.5855 0.735
0.4366 11.0 18337 0.5761 0.7415
0.3762 12.0 20004 0.5642 0.7496
0.3321 13.0 21671 0.5373 0.7652
0.2916 14.0 23338 0.5314 0.7625
0.2615 15.0 25005 0.6206 0.7281
0.2357 16.0 26672 0.5437 0.763
0.2153 17.0 28339 0.5335 0.763
0.1986 18.0 30006 0.4892 0.7869
0.1866 19.0 31673 0.5368 0.7645
0.1765 20.0 33340 0.4919 0.7836

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+rocm6.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
14M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.