DriVLMe: Enhancing LLM-based Autonomous Driving Agents with Embodied and Social Experiences
Project Page | Paper | Video | Code
Yidong Huang, Jacob Sansom, Ziqiao Ma, Felix Gervits, Joyce Chai
University of Michigan, ARL
IROS 2024
You can also download the pretrained checkpoints from this link
To run the open-loop evaluation, we can use the command
python drivlme/single_video_inference_SDN.py --model-name /nfs/turbo/coe-chaijy-unreplicated/pre-trained-weights/LLaVA/LLaVA-7B-Lightening-v1-1/ --projection_path ./DriVLMe_model_weights/bddx_pretrain_ckpt/mm_projector.bin --lora_path ./DriVLMe_model_weights/DriVLMe/ --json_path datasets/SDN_test_actions.json --video_root videos/SDN_test_videos/ --out_path SDN_test_actions.json
python evaluation/physical_action_acc.py
for NfD task and
python drivlme/single_video_inference_SDN.py --model-name /nfs/turbo/coe-chaijy-unreplicated/pre-trained-weights/LLaVA/LLaVA-7B-Lightening-v1-1/ --projection_path ./DriVLMe_model_weights/bddx_pretrain_ckpt/mm_projector.bin --lora_path ./DriVLMe_model_weights/DriVLMe/ --json_path datasets/SDN_test_conversations.json --video_root videos/SDN_test_videos/ --out_path SDN_test_conversations.json
python evaluation/diag_action_acc.py
for RfN task.
- Downloads last month
- 2