slplab's picture
End of training
ecdf0cd verified
|
raw
history blame
2.31 kB
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: EleutherAI/polyglot-ko-1.3b
model-index:
- name: pretrain_w-cot_w-asd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pretrain_w-cot_w-asd
This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.6959 | 0.1725 | 1000 | 0.2915 |
| 0.2871 | 0.3450 | 2000 | 0.2810 |
| 0.2737 | 0.5174 | 3000 | 0.2769 |
| 0.2759 | 0.6899 | 4000 | 0.2737 |
| 0.2708 | 0.8624 | 5000 | 0.2717 |
| 0.2695 | 1.0349 | 6000 | 0.2716 |
| 0.2673 | 1.2074 | 7000 | 0.2713 |
| 0.2697 | 1.3798 | 8000 | 0.2694 |
| 0.2658 | 1.5523 | 9000 | 0.2682 |
| 0.2674 | 1.7248 | 10000 | 0.2673 |
| 0.2641 | 1.8973 | 11000 | 0.2664 |
| 0.2626 | 2.0698 | 12000 | 0.2666 |
| 0.2612 | 2.2422 | 13000 | 0.2662 |
| 0.266 | 2.4147 | 14000 | 0.2655 |
| 0.2626 | 2.5872 | 15000 | 0.2654 |
| 0.2637 | 2.7597 | 16000 | 0.2652 |
| 0.2623 | 2.9322 | 17000 | 0.2650 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1