|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: EleutherAI/polyglot-ko-1.3b |
|
model-index: |
|
- name: pretrain_w-cot_wo-asd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pretrain_w-cot_wo-asd |
|
|
|
This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2648 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.6934 | 0.1727 | 1000 | 0.2945 | |
|
| 0.2864 | 0.3454 | 2000 | 0.2812 | |
|
| 0.2787 | 0.5181 | 3000 | 0.2762 | |
|
| 0.2739 | 0.6908 | 4000 | 0.2747 | |
|
| 0.2709 | 0.8636 | 5000 | 0.2722 | |
|
| 0.2727 | 1.0363 | 6000 | 0.2704 | |
|
| 0.2694 | 1.2090 | 7000 | 0.2703 | |
|
| 0.2684 | 1.3817 | 8000 | 0.2683 | |
|
| 0.2652 | 1.5544 | 9000 | 0.2678 | |
|
| 0.2641 | 1.7271 | 10000 | 0.2674 | |
|
| 0.2624 | 1.8998 | 11000 | 0.2670 | |
|
| 0.268 | 2.0725 | 12000 | 0.2661 | |
|
| 0.2614 | 2.2453 | 13000 | 0.2661 | |
|
| 0.2622 | 2.4180 | 14000 | 0.2656 | |
|
| 0.2621 | 2.5907 | 15000 | 0.2653 | |
|
| 0.263 | 2.7634 | 16000 | 0.2649 | |
|
| 0.2625 | 2.9361 | 17000 | 0.2648 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |