Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: tiiuae/falcon-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 2873280c1551a4bb_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2873280c1551a4bb_train_data.json
  type:
    field_input: verse_text
    field_instruction: book_name
    field_output: model
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56/d8427ff2-5f59-4882-b0ec-6b02abb5a270
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/2873280c1551a4bb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: d8427ff2-5f59-4882-b0ec-6b02abb5a270
wandb_project: god
wandb_run: mejm
wandb_runid: d8427ff2-5f59-4882-b0ec-6b02abb5a270
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

d8427ff2-5f59-4882-b0ec-6b02abb5a270

This model is a fine-tuned version of tiiuae/falcon-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0025 1 10.3476
1.4523 0.1067 42 0.1004
0.2831 0.2134 84 0.0275
0.0681 0.3201 126 0.0082
0.1058 0.4268 168 0.0042
0.016 0.5335 210 0.0025
0.0376 0.6402 252 0.0009
0.0002 0.7469 294 0.0004
0.0025 0.8536 336 0.0002
0.0018 0.9603 378 0.0002
0.0002 1.0670 420 0.0001
0.0001 1.1737 462 0.0001

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56/d8427ff2-5f59-4882-b0ec-6b02abb5a270

Base model

tiiuae/falcon-7b
Adapter
(194)
this model