See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
bf16: true
chat_template: llama3
datasets:
- data_files:
- 3e560666a3ac2426_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3e560666a3ac2426_train_data.json
type:
field_input: hint
field_instruction: task
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56a4/b951d981-523e-4c6e-a573-b2515d53aef2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/3e560666a3ac2426_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: b951d981-523e-4c6e-a573-b2515d53aef2
wandb_project: god
wandb_run: wip7
wandb_runid: b951d981-523e-4c6e-a573-b2515d53aef2
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
b951d981-523e-4c6e-a573-b2515d53aef2
This model is a fine-tuned version of tokyotech-llm/Llama-3-Swallow-8B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1378 | 0.0004 | 1 | 1.1295 |
1.1122 | 0.0020 | 5 | 1.1191 |
1.0177 | 0.0041 | 10 | 1.0636 |
1.031 | 0.0061 | 15 | 1.0182 |
0.9898 | 0.0082 | 20 | 0.9961 |
1.0331 | 0.0102 | 25 | 0.9787 |
1.0943 | 0.0123 | 30 | 0.9683 |
0.9843 | 0.0143 | 35 | 0.9607 |
0.9516 | 0.0164 | 40 | 0.9567 |
1.0442 | 0.0184 | 45 | 0.9550 |
0.8324 | 0.0205 | 50 | 0.9546 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56a4/b951d981-523e-4c6e-a573-b2515d53aef2
Base model
tokyotech-llm/Llama-3-Swallow-8B-v0.1