See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
bf16: true
chat_template: llama3
datasets:
- data_files:
- 985be5197101f275_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/985be5197101f275_train_data.json
type:
field_instruction: anchor
field_output: positive
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56a4/ef0e7220-dcbb-4819-a649-c74b01532a33
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 80GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/985be5197101f275_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: ef0e7220-dcbb-4819-a649-c74b01532a33
wandb_project: god
wandb_run: t0pb
wandb_runid: ef0e7220-dcbb-4819-a649-c74b01532a33
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
ef0e7220-dcbb-4819-a649-c74b01532a33
This model is a fine-tuned version of Orenguteng/Llama-3-8B-Lexi-Uncensored on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8972
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.3641 | 0.0115 | 1 | 3.1728 |
2.9428 | 0.1034 | 9 | 2.5631 |
2.0154 | 0.2069 | 18 | 1.9066 |
1.7118 | 0.3103 | 27 | 1.6188 |
1.566 | 0.4138 | 36 | 1.4045 |
1.2595 | 0.5172 | 45 | 1.2442 |
1.1528 | 0.6207 | 54 | 1.1345 |
1.0953 | 0.7241 | 63 | 1.0260 |
0.9917 | 0.8276 | 72 | 0.9594 |
0.9398 | 0.9310 | 81 | 0.9210 |
0.8958 | 1.0345 | 90 | 0.9015 |
0.9043 | 1.1379 | 99 | 0.8972 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56a4/ef0e7220-dcbb-4819-a649-c74b01532a33
Base model
Orenguteng/Llama-3-8B-Lexi-Uncensored