See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf
bf16: true
chat_template: llama3
datasets:
- data_files:
- b7699d8f840b3f68_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b7699d8f840b3f68_train_data.json
type:
field_input: text
field_instruction: query
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56b1/139702c5-8fca-459d-9572-8dcc7f65991c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b7699d8f840b3f68_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 139702c5-8fca-459d-9572-8dcc7f65991c
wandb_project: god
wandb_run: qzfz
wandb_runid: 139702c5-8fca-459d-9572-8dcc7f65991c
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
139702c5-8fca-459d-9572-8dcc7f65991c
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0780
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
12.2329 | 0.0051 | 1 | 6.1114 |
5.7702 | 0.0457 | 9 | 1.9652 |
0.5509 | 0.0914 | 18 | 0.2624 |
0.5532 | 0.1371 | 27 | 0.2495 |
0.4807 | 0.1827 | 36 | 0.2430 |
0.4489 | 0.2284 | 45 | 0.2319 |
0.5007 | 0.2741 | 54 | 0.2150 |
0.3521 | 0.3198 | 63 | 0.1924 |
0.1923 | 0.3655 | 72 | 0.1335 |
0.2394 | 0.4112 | 81 | 0.0832 |
0.2247 | 0.4569 | 90 | 0.0789 |
0.0715 | 0.5025 | 99 | 0.0780 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56b1/139702c5-8fca-459d-9572-8dcc7f65991c
Base model
NousResearch/CodeLlama-7b-hf