See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 1c07dda4c06a7b3c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1c07dda4c06a7b3c_train_data.json
type:
field_input: period
field_instruction: genre
field_output: transliteration
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56c1/236afb2b-70bc-4f99-aec5-db7be14a2434
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 70GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/1c07dda4c06a7b3c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 236afb2b-70bc-4f99-aec5-db7be14a2434
wandb_project: god
wandb_run: ec87
wandb_runid: 236afb2b-70bc-4f99-aec5-db7be14a2434
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
236afb2b-70bc-4f99-aec5-db7be14a2434
This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.6258 | 0.0014 | 1 | 2.9991 |
7.5031 | 0.0350 | 25 | 1.7672 |
5.9258 | 0.0701 | 50 | 1.4393 |
5.4527 | 0.1051 | 75 | 1.2078 |
4.988 | 0.1401 | 100 | 1.1392 |
4.8237 | 0.1751 | 125 | 1.0711 |
4.449 | 0.2102 | 150 | 1.0369 |
4.6221 | 0.2452 | 175 | 1.0141 |
4.62 | 0.2802 | 200 | 1.0068 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 56
Model tree for sn56c1/236afb2b-70bc-4f99-aec5-db7be14a2434
Base model
microsoft/Phi-3-mini-128k-instruct