Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 1c07dda4c06a7b3c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/1c07dda4c06a7b3c_train_data.json
  type:
    field_input: period
    field_instruction: genre
    field_output: transliteration
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56c1/236afb2b-70bc-4f99-aec5-db7be14a2434
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/1c07dda4c06a7b3c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 236afb2b-70bc-4f99-aec5-db7be14a2434
wandb_project: god
wandb_run: ec87
wandb_runid: 236afb2b-70bc-4f99-aec5-db7be14a2434
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

236afb2b-70bc-4f99-aec5-db7be14a2434

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
7.6258 0.0014 1 2.9991
7.5031 0.0350 25 1.7672
5.9258 0.0701 50 1.4393
5.4527 0.1051 75 1.2078
4.988 0.1401 100 1.1392
4.8237 0.1751 125 1.0711
4.449 0.2102 150 1.0369
4.6221 0.2452 175 1.0141
4.62 0.2802 200 1.0068

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
56
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56c1/236afb2b-70bc-4f99-aec5-db7be14a2434

Adapter
(198)
this model