See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tiiuae/falcon-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 585bf3c743a7ba71_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/585bf3c743a7ba71_train_data.json
type:
field_instruction: text
field_output: label
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56c1/97a984b9-f599-42f6-9385-9b164ff3fa4d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/585bf3c743a7ba71_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 97a984b9-f599-42f6-9385-9b164ff3fa4d
wandb_project: god
wandb_run: gbhy
wandb_runid: 97a984b9-f599-42f6-9385-9b164ff3fa4d
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
97a984b9-f599-42f6-9385-9b164ff3fa4d
This model is a fine-tuned version of tiiuae/falcon-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1590
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 358
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0084 | 1 | 9.0840 |
3.5983 | 0.2516 | 30 | 0.2188 |
1.5244 | 0.5031 | 60 | 0.1821 |
1.4499 | 0.7547 | 90 | 0.1972 |
1.2132 | 1.0063 | 120 | 0.1613 |
1.0687 | 1.2579 | 150 | 0.1649 |
1.1762 | 1.5094 | 180 | 0.1614 |
1.1464 | 1.7610 | 210 | 0.1598 |
0.9958 | 2.0126 | 240 | 0.1521 |
0.8069 | 2.2642 | 270 | 0.1589 |
0.7462 | 2.5157 | 300 | 0.1636 |
0.7425 | 2.7673 | 330 | 0.1590 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for sn56c1/97a984b9-f599-42f6-9385-9b164ff3fa4d
Base model
tiiuae/falcon-7b