See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tiiuae/falcon-rw-1b
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 4a71a81bf9963904_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4a71a81bf9963904_train_data.json
type:
field_input: context
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56c2/eca13f1d-e26f-4476-ba9a-54b39c1a56d3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 70GB
max_steps: 200
micro_batch_size: 1
mlflow_experiment_name: /tmp/4a71a81bf9963904_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56c2/eca13f1d
wandb_project: god
wandb_run: ww6o
wandb_runid: sn56c2/eca13f1d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
fadd37f4-4020-43e7-9ce3-cefc8d88af45
This model is a fine-tuned version of tiiuae/falcon-rw-1b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
35.3135 | 0.0016 | 1 | 1.4237 |
9.5328 | 0.0408 | 25 | 0.2138 |
4.3561 | 0.0816 | 50 | 0.1110 |
2.4037 | 0.1224 | 75 | 0.0840 |
2.8843 | 0.1632 | 100 | 0.0642 |
1.9275 | 0.2040 | 125 | 0.0566 |
2.243 | 0.2448 | 150 | 0.0492 |
1.9707 | 0.2856 | 175 | 0.0459 |
1.722 | 0.3264 | 200 | 0.0462 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56c2/eca13f1d-e26f-4476-ba9a-54b39c1a56d3
Base model
tiiuae/falcon-rw-1b