Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Korabbit/llama-2-ko-7b
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 287b434576c4174a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/287b434576c4174a_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56t0/2ffde3e0-13e4-4f41-bc6a-f2565a906308
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/287b434576c4174a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
seed: 2046206566
sequence_len: 1024
shuffle: true
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 2pqi
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

2ffde3e0-13e4-4f41-bc6a-f2565a906308

This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8189

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 2046206566
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
2.9354 0.0006 1 2.8529
1.8032 0.0056 9 1.4892
0.9089 0.0112 18 0.9421
0.8757 0.0168 27 0.8805
0.8392 0.0225 36 0.8568
0.8853 0.0281 45 0.8438
0.9101 0.0337 54 0.8344
0.7951 0.0393 63 0.8280
0.768 0.0449 72 0.8236
0.8402 0.0505 81 0.8207
0.7664 0.0562 90 0.8193
0.68 0.0618 99 0.8189

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for sn56t0/2ffde3e0-13e4-4f41-bc6a-f2565a906308

Adapter
(252)
this model