models

This model is a fine-tuned version of microsoft/resnet-18 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4704
  • Accuracy: 0.8182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4144 0.99 20 0.9938 0.7
0.7896 1.98 40 0.7022 0.7152
0.6191 2.96 60 0.6079 0.7636
0.6114 4.0 81 0.5554 0.7939
0.5365 4.99 101 0.5233 0.8152
0.4989 5.98 121 0.4934 0.8303
0.5111 6.96 141 0.5181 0.8
0.476 8.0 162 0.4844 0.8182
0.4655 8.99 182 0.4870 0.8152
0.4335 9.98 202 0.4802 0.8242
0.44 10.96 222 0.4776 0.8182
0.3989 12.0 243 0.4804 0.8182
0.4007 12.99 263 0.4768 0.8242
0.3987 13.98 283 0.4610 0.8303
0.3922 14.96 303 0.4578 0.8212
0.3924 16.0 324 0.4804 0.8182
0.3995 16.99 344 0.4736 0.8121
0.3623 17.98 364 0.4715 0.8121
0.3621 18.96 384 0.4671 0.8212
0.3629 19.75 400 0.4704 0.8182

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
36
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.