Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Maykeye/TinyLLama-v0
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - c0905092ee572b26_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/c0905092ee572b26_train_data.json
  type:
    field_input: sql_context
    field_instruction: sql_prompt
    field_output: sql
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: sniperfix/72d09445-c8bd-40da-b0c5-560165556a38
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 90
micro_batch_size: 2
mlflow_experiment_name: /tmp/c0905092ee572b26_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: indexjupri-sniper-country
wandb_mode: online
wandb_name: 80865214-b1ee-4b31-892c-91f6cb17adfe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 80865214-b1ee-4b31-892c-91f6cb17adfe
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

72d09445-c8bd-40da-b0c5-560165556a38

This model is a fine-tuned version of Maykeye/TinyLLama-v0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 8.5326

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 90

Training results

Training Loss Epoch Step Validation Loss
No log 0.0007 1 11.2105
11.0982 0.0054 8 10.8824
10.4536 0.0108 16 10.1809
9.6936 0.0162 24 9.5492
9.3063 0.0216 32 9.1189
8.9743 0.0270 40 8.9002
8.7331 0.0324 48 8.7546
8.6922 0.0378 56 8.6550
8.6201 0.0432 64 8.5892
8.6087 0.0486 72 8.5518
8.5801 0.0540 80 8.5363
8.5396 0.0594 88 8.5326

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for sniperfix/72d09445-c8bd-40da-b0c5-560165556a38

Adapter
(438)
this model