whisper-base-ca / README.md
jordimas's picture
Link
6c723e9
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - hf-asr-leaderboard
  - whisper-event
metrics:
  - wer
model-index:
  - name: openai/whisper-medium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 ca
          type: mozilla-foundation/common_voice_11_0
          args: 'config: ml, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 16.15101446793939
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs ca
          type: google/fleurs
          args: 'config: ml, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 20.4
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: projecte-aina/parlament_parla clean
          type: projecte-aina/parlament_parla
          args: 'config: ml, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 21.14

openai/whisper-base

This is an automatic speech recognition model that also does punctuation and casing. This model is for research only, we do not recommend using this model on production environments. See our learnings when training these models.

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_11_0 ca dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3608
  • Wer: 16.1510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4841 0.1 4000 0.5078 26.7974
0.3116 0.2 8000 0.4524 22.9455
0.3971 0.3 12000 0.4281 21.5427
0.2965 0.4 16000 0.4037 20.3082
0.2634 1.09 20000 0.3875 18.7980
0.2163 1.19 24000 0.3754 17.8170
0.3182 1.29 28000 0.3695 16.8587
0.2201 1.39 32000 0.3613 16.5785
0.155 2.08 36000 0.3633 16.3959
0.0904 2.18 40000 0.3608 16.1510

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.0+cu102
  • Datasets 2.8.0
  • Tokenizers 0.13.2