metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-oxford-iiit-pets
results: []
vit-base-oxford-iiit-pets
This model is a fine-tuned version of google/vit-base-patch16-224 on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set:
- Loss: 0.2022
- Accuracy: 0.9391
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3716 | 1.0 | 370 | 0.3101 | 0.9283 |
0.2157 | 2.0 | 740 | 0.2396 | 0.9323 |
0.1558 | 3.0 | 1110 | 0.2290 | 0.9350 |
0.1375 | 4.0 | 1480 | 0.2166 | 0.9364 |
0.1301 | 5.0 | 1850 | 0.2135 | 0.9418 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.2.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3