OpenHermes 2.5 - Mistral 7B AWQ

image/png

Model Author's Description

OpenHermes 2.5 Mistral 7B is a state of the art Mistral Fine-tune, a continuation of OpenHermes 2 model, which trained on additional code datasets.

Potentially the most interesting finding from training on a good ratio (est. of around 7-14% of the total dataset) of code instruction was that it has boosted several non-code benchmarks, including TruthfulQA, AGIEval, and GPT4All suite. It did however reduce BigBench benchmark score, but the net gain overall is significant.

The code it trained on also improved it's humaneval score (benchmarking done by Glaive team) from 43% @ Pass 1 with Open Herms 2 to 50.7% @ Pass 1 with Open Hermes 2.5.

OpenHermes was trained on 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape. [More details soon]

Filtering was extensive of these public datasets, as well as conversion of all formats to ShareGPT, which was then further transformed by axolotl to use ChatML.

Huge thank you to GlaiveAI and a16z for compute access and for sponsoring my work, and all the dataset creators and other people who's work has contributed to this project!

Follow all my updates in ML and AI on Twitter: https://twitter.com/Teknium1

Support me on Github Sponsors: https://github.com/sponsors/teknium1

NEW: Chat with Hermes on LMSys' Chat Website! https://chat.lmsys.org/?single&model=openhermes-2.5-mistral-7b

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/OpenHermes-2-Mistral-7B-AWQ"
system_message = "You are Senzu, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Downloads last month
6
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for solidrust/OpenHermes-2.5-Mistral-7B-AWQ

Quantized
(7)
this model

Dataset used to train solidrust/OpenHermes-2.5-Mistral-7B-AWQ

Collection including solidrust/OpenHermes-2.5-Mistral-7B-AWQ