l3utterfly/mistral-7b-v0.2-layla-v4 AWQ

image/png (image by https://huggingface.co/Kronikus)

Model Summary

Mistral 7B (v0.2) fine-tuned by the OpenHermes 2.5 dataset optimised for multi-turn conversation and character impersonation.

The dataset has been pre-processed by doing the following:

  1. remove all refusals
  2. remove any mention of AI assistant
  3. split any multi-turn dialog generated in the dataset into multi-turn conversations records
  4. added nfsw generated conversations from the Teatime dataset
  • Developed by: l3utterfly
  • Funded by: Layla Network
  • Model type: Mistral
  • Language(s) (NLP): English
  • License: Apache-2.0
  • Finetuned from model: Mistral 7B (v0.2)

How to use

Install the necessary packages

pip install --upgrade autoawq autoawq-kernels

Example Python code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/mistral-7b-v0.2-layla-v4-AWQ"
system_message = "You are Layla, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Downloads last month
16
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Collection including solidrust/mistral-7b-v0.2-layla-v4-AWQ