language:
- es
metrics:
- f1
pipeline_tag: text-classification
datasets:
- dariolopez/suicide-comments-es
license: apache-2.0
Model Description
This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne to detect suicidal ideation/behavior in public comments (reddit, forums, twitter, etc.) using the Spanish language.
How to use
>>> from transformers import pipeline
>>> model_name= 'dariolopez/roberta-base-bne-finetuned-suicide-es'
>>> pipe = pipeline("text-classification", model=model_name)
>>> pipe("Quiero acabar con todo. No merece la pena vivir.")
[{'label': 'Suicide', 'score': 0.9999703168869019}]
>>> pipe("El partido de fútbol fue igualado, disfrutamos mucho jugando juntos.")
[{'label': 'Non-Suicide', 'score': 0.999990701675415}]
Training
Training data
The dataset consists of comments on Reddit, Twitter, and inputs/outputs of the Alpaca dataset translated to Spanish language and classified as suicidal ideation/behavior and non-suicidal.
The dataset has 10050 rows (777 considered as Suicidal Ideation/Behavior and 9273 considered Non-Suicidal).
More info: https://huggingface.co/datasets/dariolopez/suicide-comments-es
Training procedure
The training data has been tokenized using the PlanTL-GOB-ES/roberta-base-bne
tokenizer with a vocabulary size of 50262 tokens and a model maximum length of 512 tokens.
The training lasted a total of 10 minutes using a NVIDIA GPU GeForce RTX 3090.
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 GeForce RTX 3090 Off | 00000000:68:00.0 Off | N/A | | 31% 50C P8 25W / 250W | 1MiB / 24265MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
Considerations for Using the Model
The model is designed for use in Spanish language, specifically to detect suicidal ideation/behavior.
Intended uses & limitations
In progress.
Limitations and bias
In progress.
Evaluation
Metric
F1 = 2 * (precision * recall) / (precision + recall)
5 K fold
We use KFold with n_splits=5
to evaluate the model.
Results:
>>> best_f1_model_by_fold = [0.9163879598662207, 0.9380530973451328, 0.9333333333333333, 0.8943661971830986, 0.9226190476190477]
>>> best_f1_model_by_fold.mean()
0.9209519270693666
Additional Information
Team
Licesing
This work is licensed under a Apache License, Version 2.0