Introduction

Qwen-7B finetuned on a parallel corpus for translation between Kanbun (漢文) and its Kakikudashibun (書き下し文).

Examples

response, history = model.chat(tokenizer, "冀靈體之復形,御輕舟而上溯。", history=None)
print(response)
冀して靈体の復形、軽舟に御して上溯せんとし
response, history = model.chat(tokenizer, "鳥欲高飛先振翅,人求上進則讀書。", history=None)
print(response)
鳥の高飛するを欲すれば先づ翼を振ふ、人の上の前に進むを求めて則ち書を読む。
response, history = model.chat(tokenizer, "浮長川而忘返,思綿綿而增慕。", history=None)
print(response)
長川に浮かして返らざるを、締結の绵綿にして慕うを増す。
response, history = model.chat(tokenizer, "夜耿耿而不寐,沾繁霜而至曙。", history=None)
print(response)
夜は耿耿として寐りず、繁霜に沾れて曙を至る。

Model Card for Model ID

Model Details

Model Description

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Framework versions

  • PEFT 0.11.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sophiefy/Qwen-7B-kanbun

Adapter
(5)
this model