|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
|
|
import paddle |
|
import PIL.Image |
|
|
|
from paddlenlp.transformers import ( |
|
CLIPFeatureExtractor, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from ...models import AutoencoderKL, UNet2DConditionModel |
|
from ...pipeline_utils import DiffusionPipeline |
|
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
from ...utils import logging |
|
from .modeling_text_unet import UNetFlatConditionModel |
|
from .pipeline_versatile_diffusion_dual_guided import ( |
|
VersatileDiffusionDualGuidedPipeline, |
|
) |
|
from .pipeline_versatile_diffusion_image_variation import ( |
|
VersatileDiffusionImageVariationPipeline, |
|
) |
|
from .pipeline_versatile_diffusion_text_to_image import ( |
|
VersatileDiffusionTextToImagePipeline, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class VersatileDiffusionPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for generation using Versatile Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
Frozen text-encoder. Versatile Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
image_encoder ([`CLIPVisionModelWithProjection`]): |
|
Frozen vision-encoder. Versatile Diffusion uses the vision portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
image_unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
text_unet ([`UNetFlatConditionModel`]): xxx. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
image_feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
tokenizer: CLIPTokenizer |
|
image_feature_extractor: CLIPFeatureExtractor |
|
text_encoder: CLIPTextModelWithProjection |
|
image_encoder: CLIPVisionModelWithProjection |
|
image_unet: UNet2DConditionModel |
|
text_unet: UNetFlatConditionModel |
|
vae: AutoencoderKL |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: CLIPTokenizer, |
|
image_feature_extractor: CLIPFeatureExtractor, |
|
text_encoder: CLIPTextModelWithProjection, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
image_unet: UNet2DConditionModel, |
|
text_unet: UNetFlatConditionModel, |
|
vae: AutoencoderKL, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
image_feature_extractor=image_feature_extractor, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
image_unet=image_unet, |
|
text_unet=text_unet, |
|
vae=vae, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
@paddle.no_grad() |
|
def image_variation( |
|
self, |
|
image: Union[paddle.Tensor, PIL.Image.Image], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
latents: Optional[paddle.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): |
|
The image prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`paddle.Generator`, *optional*): |
|
A [paddle generator] to make generation |
|
deterministic. |
|
latents (`paddle.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from ppdiffusers import VersatileDiffusionPipeline |
|
>>> import paddle |
|
>>> import requests |
|
>>> from io import BytesIO |
|
>>> from PIL import Image |
|
|
|
>>> # let's download an initial image |
|
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" |
|
|
|
>>> response = requests.get(url) |
|
>>> image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
>>> pipe = VersatileDiffusionPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion" |
|
... ) |
|
|
|
>>> generator = paddle.Generator().manual_seed(0) |
|
>>> image = pipe.image_variation(image, generator=generator).images[0] |
|
>>> image.save("./car_variation.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() |
|
components = {name: component for name, component in self.components.items() if name in expected_components} |
|
return VersatileDiffusionImageVariationPipeline(**components)( |
|
image=image, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
|
|
@paddle.no_grad() |
|
def text_to_image( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
latents: Optional[paddle.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`paddle.Generator`, *optional*): |
|
A [paddle generator] to make generation |
|
deterministic. |
|
latents (`paddle.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from ppdiffusers import VersatileDiffusionPipeline |
|
>>> import paddle |
|
|
|
>>> pipe = VersatileDiffusionPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion" |
|
... ) |
|
|
|
>>> generator = paddle.Generator().manual_seed(0) |
|
>>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] |
|
>>> image.save("./astronaut.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() |
|
components = {name: component for name, component in self.components.items() if name in expected_components} |
|
temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) |
|
output = temp_pipeline( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
|
|
temp_pipeline._swap_unet_attention_blocks() |
|
|
|
return output |
|
|
|
@paddle.no_grad() |
|
def dual_guided( |
|
self, |
|
prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], |
|
image: Union[str, List[str]], |
|
text_to_image_strength: float = 0.5, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
latents: Optional[paddle.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`paddle.Generator`, *optional*): |
|
A [paddle generator] to make generation |
|
deterministic. |
|
latents (`paddle.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from ppdiffusers import VersatileDiffusionPipeline |
|
>>> import paddle |
|
>>> import requests |
|
>>> from io import BytesIO |
|
>>> from PIL import Image |
|
|
|
>>> # let's download an initial image |
|
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" |
|
|
|
>>> response = requests.get(url) |
|
>>> image = Image.open(BytesIO(response.content)).convert("RGB") |
|
>>> text = "a red car in the sun" |
|
|
|
>>> pipe = VersatileDiffusionPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion" |
|
... ) |
|
|
|
>>> generator = paddle.Generator().manual_seed(0) |
|
>>> text_to_image_strength = 0.75 |
|
|
|
>>> image = pipe.dual_guided( |
|
... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator |
|
... ).images[0] |
|
>>> image.save("./car_variation.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When |
|
returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() |
|
components = {name: component for name, component in self.components.items() if name in expected_components} |
|
temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) |
|
output = temp_pipeline( |
|
prompt=prompt, |
|
image=image, |
|
text_to_image_strength=text_to_image_strength, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
temp_pipeline._revert_dual_attention() |
|
|
|
return output |
|
|