|
import streamlit as st |
|
import json |
|
import pandas as pd |
|
import plotly.express as px |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def load_jsonl(file_path): |
|
data = [] |
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
data.append(json.loads(line)) |
|
return pd.DataFrame(data) |
|
|
|
|
|
def filter_by_keyword(df, keyword): |
|
return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)] |
|
|
|
|
|
small_data = load_jsonl("usmle_16.2MB.jsonl") |
|
large_data = load_jsonl("usmle_2.08MB.jsonl") |
|
|
|
|
|
st.title("EDA with Plotly and Seaborn 📊") |
|
|
|
|
|
file_option = st.selectbox("Select file:", ["small_file.jsonl", "large_file.jsonl"]) |
|
st.write(f"You selected: {file_option}") |
|
|
|
|
|
if file_option == "small_file.jsonl": |
|
data = small_data |
|
else: |
|
data = large_data |
|
|
|
filtered_data = filter_by_keyword(data, "Heart") |
|
st.write("Filtered Dataset by 'Heart'") |
|
st.dataframe(filtered_data) |
|
|
|
|
|
if st.button("Generate Charts"): |
|
|
|
st.subheader("Plotly Charts 📈") |
|
|
|
|
|
fig = px.scatter(data, x=data.columns[0], y=data.columns[1]) |
|
st.plotly_chart(fig) |
|
|
|
|
|
fig = px.line(data, x=data.columns[0], y=data.columns[1]) |
|
st.plotly_chart(fig) |
|
|
|
|
|
fig = px.bar(data, x=data.columns[0], y=data.columns[1]) |
|
st.plotly_chart(fig) |
|
|
|
|
|
fig = px.histogram(data, x=data.columns[0]) |
|
st.plotly_chart(fig) |
|
|
|
|
|
fig = px.box(data, x=data.columns[0], y=data.columns[1]) |
|
st.plotly_chart(fig) |
|
|
|
st.subheader("Seaborn Charts 📊") |
|
|
|
|
|
fig, ax = plt.subplots() |
|
sns.violinplot(x=data.columns[0], y=data.columns[1], data=data) |
|
st.pyplot(fig) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
sns.swarmplot(x=data.columns[0], y=data.columns[1], data=data) |
|
st.pyplot(fig) |
|
|
|
|
|
fig = sns.pairplot(data) |
|
st.pyplot(fig) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
sns.heatmap(data.corr(), annot=True) |
|
st.pyplot(fig) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
sns.regplot(x=data.columns[0], y=data.columns[1], data=data) |
|
st.pyplot(fig) |
|
|
|
|