Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer | |
from importlib_resources import files | |
from ldm.modules.encoders.CLAP.utils import read_config_as_args | |
from ldm.modules.encoders.CLAP.clap import TextEncoder | |
from ldm.util import count_params | |
import numpy as np | |
class Video_Feat_Encoder_NoPosembed(nn.Module): | |
""" Transform the video feat encoder""" | |
def __init__(self, origin_dim, embed_dim, seq_len=40): | |
super().__init__() | |
self.embedder = nn.Sequential(nn.Linear(origin_dim, embed_dim)) | |
def forward(self, x): | |
# Revise the shape here: | |
x = self.embedder(x) # B x 117 x C | |
return x | |
class Video_Feat_Encoder_NoPosembed_inpaint(Video_Feat_Encoder_NoPosembed): | |
""" Transform the video feat encoder""" | |
def forward(self, x): | |
# Revise the shape here: | |
video, spec = x['mix_video_feat'], x['mix_spec'] | |
video = self.embedder(video) # B x 117 x C | |
return (video, spec) | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class FrozenFLANEmbedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, | |
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
# self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) # tango的flanT5是不定长度的batch,这里做成定长的batch | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLAPEmbedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from microsoft""" | |
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
) | |
self.max_length = max_length | |
self.device = device | |
if freeze: self.freeze() | |
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self): # only freeze | |
self.caption_encoder.base = self.caption_encoder.base.eval() | |
for param in self.caption_encoder.base.parameters(): | |
param.requires_grad = False | |
def encode(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.caption_encoder.base(input_ids=tokens) | |
z = self.caption_encoder.projection(outputs.last_hidden_state) | |
return z | |
class FrozenCLAPFLANEmbedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from microsoft""" | |
def __init__(self, weights_path, t5version="google/t5-v1_1-large", freeze=True, device="cuda", | |
max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
) | |
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version) | |
self.t5_transformer = T5EncoderModel.from_pretrained(t5version) | |
self.max_length = max_length | |
self.to(device=device) | |
if freeze: self.freeze() | |
print( | |
f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self): | |
self.caption_encoder = self.caption_encoder.eval() | |
for param in self.caption_encoder.parameters(): | |
param.requires_grad = False | |
def to(self, device): | |
self.t5_transformer.to(device) | |
self.caption_encoder.to(device) | |
self.device = device | |
def encode(self, text): | |
ori_caption = text['ori_caption'] | |
struct_caption = text['struct_caption'] | |
# print(ori_caption,struct_caption) | |
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, padding="max_length", | |
return_tensors="pt") | |
ori_tokens = clap_batch_encoding["input_ids"].to(self.device) | |
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, padding="max_length", | |
return_tensors="pt") | |
struct_tokens = t5_batch_encoding["input_ids"].to(self.device) | |
outputs = self.caption_encoder.base(input_ids=ori_tokens) | |
z = self.caption_encoder.projection(outputs.last_hidden_state) | |
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state | |
return torch.concat([z, z2], dim=1) | |