File size: 4,416 Bytes
8ccf632
 
 
 
 
eb27b70
2d69d95
06f0278
 
8ccf632
 
2d69d95
 
 
 
 
 
 
8ccf632
 
06f0278
2d69d95
 
 
 
 
 
8ccf632
 
2d69d95
 
 
 
 
 
 
 
 
 
 
 
54192f0
 
2d69d95
8ccf632
2d69d95
 
 
 
 
 
 
 
06f0278
2d69d95
 
 
 
 
 
8ccf632
06f0278
 
 
8ccf632
 
2d69d95
8ccf632
 
e2944a6
8ccf632
 
 
 
 
2d69d95
 
 
 
 
 
 
 
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d69d95
 
 
 
8ccf632
 
2d69d95
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
9aa8809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import CLIPTokenizer

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize CLIP tokenizer for prompt length checking
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")

pipe = DiffusionPipeline.from_pretrained(
    "UnfilteredAI/NSFW-Flux-v1",
    torch_dtype=dtype
).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MAX_TOKENS = 77  # CLIP's maximum token length

def truncate_prompt(prompt):
    """Truncate the prompt to fit within CLIP's token limit"""
    tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS)
    return tokenizer.decode(tokens)

@spaces.GPU()
def infer(
    prompt,
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    num_inference_steps=4,
    progress=gr.Progress(track_tqdm=True)
):
    # Truncate prompt if necessary
    truncated_prompt = truncate_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator().manual_seed(seed)
    
    try:
        image = pipe(
            prompt=truncated_prompt,
            width=width,
            height=height,
            num_inference_steps=num_inference_steps,
            generator=generator,
            guidance_scale=0.0
        ).images[0]
        
        return image, seed
    except Exception as e:
        raise gr.Error(f"Error generating image: {str(e)}")

examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
            NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer 
            capable of generating images from text descriptions. 
            Finetuned by UnfilteredAI, this model is designed to produce 
            a wide range of images, including explicit and NSFW 
            (Not Safe For Work) images from textual inputs.
            
            Note: Long prompts will be automatically truncated to fit the model's requirements.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )
        
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[
                prompt,
                seed,
                randomize_seed,
                width,
                height,
                num_inference_steps
            ],
            outputs=[result, seed]
        )

demo.launch()