SOAPReports / app.py
AbeerTrial's picture
Upload app.py
0a3a31f
raw
history blame
15.1 kB
# # -*- coding: utf-8 -*-
# """fiver-app.ipynb
# Automatically generated by Colaboratory.
# Original file is located at
# https://colab.research.google.com/drive/1YQm_fGxa2nfiV8pTN4oBrlzzfefGadaP
# """
# !pip uninstall -y numpy
# !pip install --ignore-installed numpy==1.22.0
# !pip install langchain
# !pip install PyPDF2
# !pip install docx2txt
# !pip install gradio
# !pip install faiss-gpu
# !pip install openai
# !pip install tiktoken
# !pip install python-docx
# !pip install git+https://github.com/openai/whisper.git
# !pip install sounddevice
# import shutil
# import os
# def copy_files(source_folder, destination_folder):
# # Create the destination folder if it doesn't exist
# if not os.path.exists(destination_folder):
# os.makedirs(destination_folder)
# # Get a list of files in the source folder
# files_to_copy = os.listdir(source_folder)
# for file_name in files_to_copy:
# source_file_path = os.path.join(source_folder, file_name)
# destination_file_path = os.path.join(destination_folder, file_name)
# # Copy the file to the destination folder
# shutil.copy(source_file_path, destination_file_path)
# print(f"Copied {file_name} to {destination_folder}")
# # Specify the source folder and destination folder paths
# source_folder = "/kaggle/input/fiver-app5210"
# destination_folder = "/home/user/app/local_db"
# copy_files(source_folder, destination_folder)
# import shutil
# import os
# def copy_files(source_folder, destination_folder):
# # Create the destination folder if it doesn't exist
# if not os.path.exists(destination_folder):
# os.makedirs(destination_folder)
# # Get a list of files in the source folder
# files_to_copy = os.listdir(source_folder)
# for file_name in files_to_copy:
# source_file_path = os.path.join(source_folder, file_name)
# destination_file_path = os.path.join(destination_folder, file_name)
# # Copy the file to the destination folder
# shutil.copy(source_file_path, destination_file_path)
# print(f"Copied {file_name} to {destination_folder}")
# # Specify the source folder and destination folder paths
# source_folder = "/kaggle/input/fiver-app-docs"
# destination_folder = "/home/user/app/docs"
# copy_files(source_folder, destination_folder)
def api_key(key):
import os
import openai
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"] = key
openai.api_key = key
return "Successful!"
def save_file(input_file):
import shutil
import os
destination_dir = "/home/user/app/file/"
os.makedirs(destination_dir, exist_ok=True)
output_dir = "/home/user/app/file/"
for file in input_file:
shutil.copy(file.name, output_dir)
return "File(s) saved successfully!"
def process_file():
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
import openai
loader1 = DirectoryLoader(
"/home/user/app/file/", glob="./*.pdf", loader_cls=PyPDFLoader
)
document1 = loader1.load()
loader2 = DirectoryLoader(
"/home/user/app/file/", glob="./*.txt", loader_cls=TextLoader
)
document2 = loader2.load()
loader3 = DirectoryLoader(
"/home/user/app/file/", glob="./*.docx", loader_cls=Docx2txtLoader
)
document3 = loader3.load()
document1.extend(document2)
document1.extend(document3)
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
docs = text_splitter.split_documents(document1)
embeddings = OpenAIEmbeddings()
file_db = FAISS.from_documents(docs, embeddings)
file_db.save_local("/home/user/app/file_db/")
return "File(s) processed successfully!"
def formatted_response(docs, response):
formatted_output = response + "\n\nSources"
for i, doc in enumerate(docs):
source_info = doc.metadata.get("source", "Unknown source")
page_info = doc.metadata.get("page", None)
# Get the file name without the directory path
file_name = source_info.split("/")[-1].strip()
if page_info is not None:
formatted_output += f"\n{file_name}\tpage no {page_info}"
else:
formatted_output += f"\n{file_name}"
return formatted_output
def search_file(question):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import openai
from langchain.chat_models import ChatOpenAI
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
docs = file_db.similarity_search(question)
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response(docs, response)
def search_local(question):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import openai
from langchain.chat_models import ChatOpenAI
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
docs = file_db.similarity_search(question)
print(docs)
type(docs)
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response(docs, response)
def delete_file():
import shutil
path1 = "/home/user/app/file/"
path2 = "/home/user/app/file_db/"
try:
shutil.rmtree(path1)
shutil.rmtree(path2)
return "Deleted Successfully"
except:
return "Already Deleted"
import os
import gradio as gr
def list_files():
directory = "/home/user/app/docs"
file_list = []
for root, dirs, files in os.walk(directory):
for file in files:
file_list.append(file)
return gr.Dropdown.update(choices=file_list)
file_list = list_files()
print("List of file names in the directory:")
for file_name in file_list:
print(file_name)
def soap_report(doc_name, question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
import openai
import docx
docx_path = "/home/user/app/docs/" + doc_name
doc = docx.Document(docx_path)
extracted_text = "Extracted text:\n\n\n"
for paragraph in doc.paragraphs:
extracted_text += paragraph.text + "\n"
question = (
"\n\nUse the 'Extracted text' to answer the following question:\n" + question
)
extracted_text += question
if extracted_text:
print(extracted_text)
else:
print("failed")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(extracted_text)
return response
def search_gpt(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
def local_gpt(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
global output
global response
def audio_text(filepath):
import openai
global output
audio = open(filepath, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio)
output = transcript["text"]
return output
def transcript(text):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
global response
question = (
"Use the following context given below to generate a detailed SOAP Report:\n\n"
)
question += text
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
def text_soap():
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
global output
global response
output = output
question = (
"Use the following context given below to generate a detailed SOAP Report:\n\n"
)
question += output
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
global path
def docx(name):
global response
response = response
import docx
global path
path = f"/home/user/app/docs/{name}.docx"
doc = docx.Document()
doc.add_paragraph(response)
doc.save(path)
return "Successfully saved .docx File"
import gradio as gr
css = """
.col{
max-width: 50%;
margin: 0 auto;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("File Chatting App")
with gr.Tab("Chat with Files"):
with gr.Column(elem_classes="col"):
with gr.Tab("Upload and Process Files"):
with gr.Column():
api_key_input = gr.Textbox(label="Enter API Key here")
api_key_button = gr.Button("Submit")
api_key_output = gr.Textbox(label="Output")
file_input = gr.Files(label="Upload File(s) here")
upload_button = gr.Button("Upload")
file_output = gr.Textbox(label="Output")
process_button = gr.Button("Process")
process_output = gr.Textbox(label="Output")
with gr.Tab("Ask Questions to Files"):
with gr.Column():
search_input = gr.Textbox(label="Enter Question here")
search_button = gr.Button("Search")
search_output = gr.Textbox(label="Output")
search_gpt_button = gr.Button("Ask ChatGPT")
search_gpt_output = gr.Textbox(label="Output")
delete_button = gr.Button("Delete")
delete_output = gr.Textbox(label="Output")
with gr.Tab("Chat with Local Files"):
with gr.Column(elem_classes="col"):
local_search_input = gr.Textbox(label="Enter Question here")
local_search_button = gr.Button("Search")
local_search_output = gr.Textbox(label="Output")
local_gpt_button = gr.Button("Ask ChatGPT")
local_gpt_output = gr.Textbox(label="Output")
with gr.Tab("Ask Question to SOAP Report"):
with gr.Column(elem_classes="col"):
refresh_button = gr.Button("Refresh")
soap_input = gr.Dropdown(label="Choose File")
soap_question = gr.Textbox(label="Enter Question here")
soap_button = gr.Button("Submit")
soap_output = gr.Textbox(label="Output")
with gr.Tab("Convert Audio to SOAP Report"):
with gr.Column(elem_classes="col"):
mic_text_input = gr.Audio(
source="microphone", type="filepath", label="Speak to the Microphone"
)
mic_text_button = gr.Button("Generate Transcript")
mic_text_output = gr.Textbox(label="Output")
upload_text_input = gr.Audio(
source="upload", type="filepath", label="Upload Audio File here"
)
upload_text_button = gr.Button("Generate Transcript")
upload_text_output = gr.Textbox(label="Output")
transcript_input = gr.Textbox(label="Enter Transcript here")
transcript_button = gr.Button("Generate SOAP Report")
transcript_output = gr.Textbox(label="Output")
text_soap_button = gr.Button("Generate SOAP Report")
text_soap_output = gr.Textbox(label="Output")
docx_input = gr.Textbox(label="Enter the name of .docx File")
docx_button = gr.Button("Save .docx File")
docx_output = gr.Textbox(label="Output")
api_key_button.click(api_key, inputs=api_key_input, outputs=api_key_output)
upload_button.click(save_file, inputs=file_input, outputs=file_output)
process_button.click(process_file, inputs=None, outputs=process_output)
search_button.click(search_file, inputs=search_input, outputs=search_output)
search_gpt_button.click(search_gpt, inputs=search_input, outputs=search_gpt_output)
delete_button.click(delete_file, inputs=None, outputs=delete_output)
local_search_button.click(
search_local, inputs=local_search_input, outputs=local_search_output
)
local_gpt_button.click(
local_gpt, inputs=local_search_input, outputs=local_gpt_output
)
refresh_button.click(list_files, inputs=None, outputs=soap_input)
soap_button.click(
soap_report, inputs=[soap_input, soap_question], outputs=soap_output
)
mic_text_button.click(audio_text, inputs=mic_text_input, outputs=mic_text_output)
upload_text_button.click(
audio_text, inputs=upload_text_input, outputs=upload_text_output
)
transcript_button.click(
transcript, inputs=transcript_input, outputs=transcript_output
)
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
docx_button.click(docx, inputs=docx_input, outputs=docx_output)
demo.queue()
demo.launch()