Spaces:
Sleeping
Sleeping
AbeerTrial
commited on
Commit
·
7f15565
1
Parent(s):
0a3a31f
Upload app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
# Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
# Original file is located at
|
7 |
-
# https://colab.research.google.com/drive/1YQm_fGxa2nfiV8pTN4oBrlzzfefGadaP
|
8 |
-
# """
|
9 |
-
|
10 |
-
# !pip uninstall -y numpy
|
11 |
-
# !pip install --ignore-installed numpy==1.22.0
|
12 |
-
|
13 |
-
# !pip install langchain
|
14 |
-
# !pip install PyPDF2
|
15 |
-
# !pip install docx2txt
|
16 |
-
# !pip install gradio
|
17 |
-
# !pip install faiss-gpu
|
18 |
-
# !pip install openai
|
19 |
-
# !pip install tiktoken
|
20 |
-
# !pip install python-docx
|
21 |
-
|
22 |
-
# !pip install git+https://github.com/openai/whisper.git
|
23 |
-
# !pip install sounddevice
|
24 |
-
|
25 |
-
# import shutil
|
26 |
-
# import os
|
27 |
-
|
28 |
-
# def copy_files(source_folder, destination_folder):
|
29 |
-
# # Create the destination folder if it doesn't exist
|
30 |
-
# if not os.path.exists(destination_folder):
|
31 |
-
# os.makedirs(destination_folder)
|
32 |
-
|
33 |
-
# # Get a list of files in the source folder
|
34 |
-
|
35 |
-
# files_to_copy = os.listdir(source_folder)
|
36 |
-
# for file_name in files_to_copy:
|
37 |
-
# source_file_path = os.path.join(source_folder, file_name)
|
38 |
-
# destination_file_path = os.path.join(destination_folder, file_name)
|
39 |
-
|
40 |
-
# # Copy the file to the destination folder
|
41 |
-
# shutil.copy(source_file_path, destination_file_path)
|
42 |
-
|
43 |
-
# print(f"Copied {file_name} to {destination_folder}")
|
44 |
-
|
45 |
-
# # Specify the source folder and destination folder paths
|
46 |
-
# source_folder = "/kaggle/input/fiver-app5210"
|
47 |
-
# destination_folder = "/home/user/app/local_db"
|
48 |
-
|
49 |
-
# copy_files(source_folder, destination_folder)
|
50 |
-
|
51 |
-
# import shutil
|
52 |
-
# import os
|
53 |
-
|
54 |
-
# def copy_files(source_folder, destination_folder):
|
55 |
-
# # Create the destination folder if it doesn't exist
|
56 |
-
# if not os.path.exists(destination_folder):
|
57 |
-
# os.makedirs(destination_folder)
|
58 |
-
|
59 |
-
# # Get a list of files in the source folder
|
60 |
-
# files_to_copy = os.listdir(source_folder)
|
61 |
-
|
62 |
-
# for file_name in files_to_copy:
|
63 |
-
# source_file_path = os.path.join(source_folder, file_name)
|
64 |
-
# destination_file_path = os.path.join(destination_folder, file_name)
|
65 |
-
|
66 |
-
# # Copy the file to the destination folder
|
67 |
-
# shutil.copy(source_file_path, destination_file_path)
|
68 |
-
|
69 |
-
# print(f"Copied {file_name} to {destination_folder}")
|
70 |
-
|
71 |
-
# # Specify the source folder and destination folder paths
|
72 |
-
# source_folder = "/kaggle/input/fiver-app-docs"
|
73 |
-
# destination_folder = "/home/user/app/docs"
|
74 |
-
|
75 |
-
# copy_files(source_folder, destination_folder)
|
76 |
-
|
77 |
-
|
78 |
-
def api_key(key):
|
79 |
-
import os
|
80 |
-
import openai
|
81 |
-
|
82 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
83 |
-
os.environ["OPENAI_API_KEY"] = key
|
84 |
-
openai.api_key = key
|
85 |
-
|
86 |
-
return "Successful!"
|
87 |
-
|
88 |
|
|
|
|
|
89 |
def save_file(input_file):
|
90 |
import shutil
|
91 |
import os
|
@@ -93,14 +10,13 @@ def save_file(input_file):
|
|
93 |
destination_dir = "/home/user/app/file/"
|
94 |
os.makedirs(destination_dir, exist_ok=True)
|
95 |
|
96 |
-
output_dir
|
97 |
|
98 |
for file in input_file:
|
99 |
-
|
100 |
|
101 |
return "File(s) saved successfully!"
|
102 |
|
103 |
-
|
104 |
def process_file():
|
105 |
from langchain.document_loaders import PyPDFLoader
|
106 |
from langchain.document_loaders import DirectoryLoader
|
@@ -108,30 +24,26 @@ def process_file():
|
|
108 |
from langchain.document_loaders import Docx2txtLoader
|
109 |
from langchain.vectorstores import FAISS
|
110 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
111 |
-
from langchain.text_splitter import
|
112 |
import openai
|
113 |
|
114 |
-
loader1 = DirectoryLoader(
|
115 |
-
"/home/user/app/file/", glob="./*.pdf", loader_cls=PyPDFLoader
|
116 |
-
)
|
117 |
document1 = loader1.load()
|
118 |
|
119 |
-
loader2 = DirectoryLoader(
|
120 |
-
"/home/user/app/file/", glob="./*.txt", loader_cls=TextLoader
|
121 |
-
)
|
122 |
document2 = loader2.load()
|
123 |
|
124 |
-
loader3 = DirectoryLoader(
|
125 |
-
"/home/user/app/file/", glob="./*.docx", loader_cls=Docx2txtLoader
|
126 |
-
)
|
127 |
document3 = loader3.load()
|
128 |
|
129 |
document1.extend(document2)
|
130 |
document1.extend(document3)
|
131 |
|
132 |
-
text_splitter =
|
133 |
-
separator="\n",
|
134 |
-
|
|
|
|
|
135 |
|
136 |
docs = text_splitter.split_documents(document1)
|
137 |
embeddings = OpenAIEmbeddings()
|
@@ -141,16 +53,14 @@ def process_file():
|
|
141 |
|
142 |
return "File(s) processed successfully!"
|
143 |
|
144 |
-
|
145 |
def formatted_response(docs, response):
|
146 |
formatted_output = response + "\n\nSources"
|
147 |
|
148 |
for i, doc in enumerate(docs):
|
149 |
-
source_info = doc.metadata.get(
|
150 |
-
page_info = doc.metadata.get(
|
151 |
|
152 |
-
|
153 |
-
file_name = source_info.split("/")[-1].strip()
|
154 |
|
155 |
if page_info is not None:
|
156 |
formatted_output += f"\n{file_name}\tpage no {page_info}"
|
@@ -159,7 +69,6 @@ def formatted_response(docs, response):
|
|
159 |
|
160 |
return formatted_output
|
161 |
|
162 |
-
|
163 |
def search_file(question):
|
164 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
165 |
from langchain.vectorstores import FAISS
|
@@ -173,16 +82,16 @@ def search_file(question):
|
|
173 |
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
|
174 |
docs = file_db.similarity_search(question)
|
175 |
|
176 |
-
llm = ChatOpenAI(model_name=
|
177 |
chain = load_qa_chain(llm, chain_type="stuff")
|
|
|
178 |
with get_openai_callback() as cb:
|
179 |
response = chain.run(input_documents=docs, question=question)
|
180 |
print(cb)
|
181 |
|
182 |
return formatted_response(docs, response)
|
183 |
|
184 |
-
|
185 |
-
def search_local(question):
|
186 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
187 |
from langchain.vectorstores import FAISS
|
188 |
from langchain.chains.question_answering import load_qa_chain
|
@@ -195,18 +104,17 @@ def search_local(question):
|
|
195 |
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
|
196 |
docs = file_db.similarity_search(question)
|
197 |
|
198 |
-
|
199 |
-
type(docs)
|
200 |
-
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
201 |
chain = load_qa_chain(llm, chain_type="stuff")
|
|
|
202 |
with get_openai_callback() as cb:
|
203 |
response = chain.run(input_documents=docs, question=question)
|
204 |
print(cb)
|
205 |
|
206 |
return formatted_response(docs, response)
|
207 |
|
208 |
-
|
209 |
def delete_file():
|
|
|
210 |
import shutil
|
211 |
|
212 |
path1 = "/home/user/app/file/"
|
@@ -220,34 +128,46 @@ def delete_file():
|
|
220 |
except:
|
221 |
return "Already Deleted"
|
222 |
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
|
228 |
-
|
229 |
-
directory = "/home/user/app/docs"
|
230 |
file_list = []
|
|
|
231 |
for root, dirs, files in os.walk(directory):
|
232 |
for file in files:
|
233 |
file_list.append(file)
|
234 |
return gr.Dropdown.update(choices=file_list)
|
235 |
|
|
|
|
|
|
|
236 |
|
237 |
-
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
print(file_name)
|
242 |
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
def
|
245 |
from langchain.llms import OpenAI
|
246 |
from langchain import PromptTemplate, LLMChain
|
|
|
247 |
import openai
|
248 |
import docx
|
249 |
|
250 |
-
docx_path = "/home/user/app/
|
251 |
|
252 |
doc = docx.Document(docx_path)
|
253 |
extracted_text = "Extracted text:\n\n\n"
|
@@ -270,52 +190,88 @@ def soap_report(doc_name, question):
|
|
270 |
Answer: Let's think step by step."""
|
271 |
|
272 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
273 |
-
|
|
|
274 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
275 |
response = llm_chain.run(extracted_text)
|
276 |
|
277 |
return response
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
def search_gpt(question):
|
281 |
from langchain.llms import OpenAI
|
282 |
from langchain import PromptTemplate, LLMChain
|
|
|
283 |
|
284 |
template = """Question: {question}
|
285 |
|
286 |
Answer: Let's think step by step."""
|
287 |
|
288 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
289 |
-
|
|
|
290 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
291 |
response = llm_chain.run(question)
|
292 |
|
293 |
return response
|
294 |
|
295 |
-
|
296 |
def local_gpt(question):
|
297 |
from langchain.llms import OpenAI
|
298 |
from langchain import PromptTemplate, LLMChain
|
|
|
299 |
|
300 |
template = """Question: {question}
|
301 |
|
302 |
Answer: Let's think step by step."""
|
303 |
|
304 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
305 |
-
|
|
|
306 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
307 |
response = llm_chain.run(question)
|
308 |
|
309 |
return response
|
310 |
|
311 |
-
|
312 |
global output
|
313 |
-
global response
|
314 |
-
|
315 |
|
316 |
def audio_text(filepath):
|
317 |
import openai
|
318 |
-
|
319 |
global output
|
320 |
|
321 |
audio = open(filepath, "rb")
|
@@ -324,12 +280,15 @@ def audio_text(filepath):
|
|
324 |
|
325 |
return output
|
326 |
|
|
|
|
|
327 |
|
328 |
-
def
|
329 |
from langchain.llms import OpenAI
|
330 |
from langchain import PromptTemplate, LLMChain
|
|
|
331 |
|
332 |
-
global
|
333 |
|
334 |
question = (
|
335 |
"Use the following context given below to generate a detailed SOAP Report:\n\n"
|
@@ -341,20 +300,60 @@ def transcript(text):
|
|
341 |
|
342 |
Answer: Let's think step by step."""
|
343 |
|
|
|
344 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
347 |
-
|
348 |
|
349 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
def text_soap():
|
353 |
from langchain.llms import OpenAI
|
354 |
from langchain import PromptTemplate, LLMChain
|
|
|
355 |
|
356 |
global output
|
357 |
-
global
|
358 |
output = output
|
359 |
|
360 |
question = (
|
@@ -367,31 +366,90 @@ def text_soap():
|
|
367 |
|
368 |
Answer: Let's think step by step."""
|
369 |
|
|
|
370 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
373 |
-
|
374 |
|
375 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
|
|
|
|
|
|
377 |
|
378 |
-
|
|
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
384 |
import docx
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
-
|
387 |
-
path = f"/home/user/app/docs/{name}.docx"
|
388 |
|
389 |
doc = docx.Document()
|
390 |
-
doc.add_paragraph(
|
391 |
doc.save(path)
|
392 |
|
393 |
return "Successfully saved .docx File"
|
394 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
import gradio as gr
|
397 |
|
@@ -407,111 +465,167 @@ css = """
|
|
407 |
"""
|
408 |
|
409 |
with gr.Blocks(css=css) as demo:
|
410 |
-
gr.Markdown("
|
411 |
-
|
412 |
-
with gr.Tab("Chat with Files"):
|
413 |
-
with gr.Column(elem_classes="col"):
|
414 |
-
with gr.Tab("Upload and Process Files"):
|
415 |
-
with gr.Column():
|
416 |
-
api_key_input = gr.Textbox(label="Enter API Key here")
|
417 |
-
api_key_button = gr.Button("Submit")
|
418 |
-
api_key_output = gr.Textbox(label="Output")
|
419 |
-
|
420 |
-
file_input = gr.Files(label="Upload File(s) here")
|
421 |
-
upload_button = gr.Button("Upload")
|
422 |
-
file_output = gr.Textbox(label="Output")
|
423 |
-
|
424 |
-
process_button = gr.Button("Process")
|
425 |
-
process_output = gr.Textbox(label="Output")
|
426 |
-
|
427 |
-
with gr.Tab("Ask Questions to Files"):
|
428 |
-
with gr.Column():
|
429 |
-
search_input = gr.Textbox(label="Enter Question here")
|
430 |
-
search_button = gr.Button("Search")
|
431 |
-
search_output = gr.Textbox(label="Output")
|
432 |
-
|
433 |
-
search_gpt_button = gr.Button("Ask ChatGPT")
|
434 |
-
search_gpt_output = gr.Textbox(label="Output")
|
435 |
-
|
436 |
-
delete_button = gr.Button("Delete")
|
437 |
-
delete_output = gr.Textbox(label="Output")
|
438 |
-
|
439 |
-
with gr.Tab("Chat with Local Files"):
|
440 |
-
with gr.Column(elem_classes="col"):
|
441 |
-
local_search_input = gr.Textbox(label="Enter Question here")
|
442 |
-
local_search_button = gr.Button("Search")
|
443 |
-
local_search_output = gr.Textbox(label="Output")
|
444 |
-
|
445 |
-
local_gpt_button = gr.Button("Ask ChatGPT")
|
446 |
-
local_gpt_output = gr.Textbox(label="Output")
|
447 |
-
|
448 |
-
with gr.Tab("Ask Question to SOAP Report"):
|
449 |
-
with gr.Column(elem_classes="col"):
|
450 |
-
refresh_button = gr.Button("Refresh")
|
451 |
-
soap_input = gr.Dropdown(label="Choose File")
|
452 |
-
soap_question = gr.Textbox(label="Enter Question here")
|
453 |
-
soap_button = gr.Button("Submit")
|
454 |
-
soap_output = gr.Textbox(label="Output")
|
455 |
-
|
456 |
-
with gr.Tab("Convert Audio to SOAP Report"):
|
457 |
-
with gr.Column(elem_classes="col"):
|
458 |
-
mic_text_input = gr.Audio(
|
459 |
-
source="microphone", type="filepath", label="Speak to the Microphone"
|
460 |
-
)
|
461 |
-
mic_text_button = gr.Button("Generate Transcript")
|
462 |
-
mic_text_output = gr.Textbox(label="Output")
|
463 |
-
|
464 |
-
upload_text_input = gr.Audio(
|
465 |
-
source="upload", type="filepath", label="Upload Audio File here"
|
466 |
-
)
|
467 |
-
upload_text_button = gr.Button("Generate Transcript")
|
468 |
-
upload_text_output = gr.Textbox(label="Output")
|
469 |
-
|
470 |
-
transcript_input = gr.Textbox(label="Enter Transcript here")
|
471 |
-
transcript_button = gr.Button("Generate SOAP Report")
|
472 |
-
transcript_output = gr.Textbox(label="Output")
|
473 |
-
|
474 |
-
text_soap_button = gr.Button("Generate SOAP Report")
|
475 |
-
text_soap_output = gr.Textbox(label="Output")
|
476 |
-
|
477 |
-
docx_input = gr.Textbox(label="Enter the name of .docx File")
|
478 |
-
docx_button = gr.Button("Save .docx File")
|
479 |
-
docx_output = gr.Textbox(label="Output")
|
480 |
-
|
481 |
-
api_key_button.click(api_key, inputs=api_key_input, outputs=api_key_output)
|
482 |
-
|
483 |
-
upload_button.click(save_file, inputs=file_input, outputs=file_output)
|
484 |
-
|
485 |
-
process_button.click(process_file, inputs=None, outputs=process_output)
|
486 |
-
|
487 |
-
search_button.click(search_file, inputs=search_input, outputs=search_output)
|
488 |
-
search_gpt_button.click(search_gpt, inputs=search_input, outputs=search_gpt_output)
|
489 |
-
|
490 |
-
delete_button.click(delete_file, inputs=None, outputs=delete_output)
|
491 |
-
|
492 |
-
local_search_button.click(
|
493 |
-
search_local, inputs=local_search_input, outputs=local_search_output
|
494 |
-
)
|
495 |
-
local_gpt_button.click(
|
496 |
-
local_gpt, inputs=local_search_input, outputs=local_gpt_output
|
497 |
-
)
|
498 |
|
499 |
-
|
500 |
-
|
501 |
-
soap_report, inputs=[soap_input, soap_question], outputs=soap_output
|
502 |
-
)
|
503 |
|
504 |
-
|
505 |
-
|
506 |
-
audio_text, inputs=upload_text_input, outputs=upload_text_output
|
507 |
-
)
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
demo.queue()
|
517 |
demo.launch()
|
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
5 |
+
os.environ["OPENAI_API_KEY"]
|
6 |
def save_file(input_file):
|
7 |
import shutil
|
8 |
import os
|
|
|
10 |
destination_dir = "/home/user/app/file/"
|
11 |
os.makedirs(destination_dir, exist_ok=True)
|
12 |
|
13 |
+
output_dir="/home/user/app/file/"
|
14 |
|
15 |
for file in input_file:
|
16 |
+
shutil.copy(file.name, output_dir)
|
17 |
|
18 |
return "File(s) saved successfully!"
|
19 |
|
|
|
20 |
def process_file():
|
21 |
from langchain.document_loaders import PyPDFLoader
|
22 |
from langchain.document_loaders import DirectoryLoader
|
|
|
24 |
from langchain.document_loaders import Docx2txtLoader
|
25 |
from langchain.vectorstores import FAISS
|
26 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
27 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
28 |
import openai
|
29 |
|
30 |
+
loader1 = DirectoryLoader('/home/user/app/file/', glob="./*.pdf", loader_cls=PyPDFLoader)
|
|
|
|
|
31 |
document1 = loader1.load()
|
32 |
|
33 |
+
loader2 = DirectoryLoader('/home/user/app/file/', glob="./*.txt", loader_cls=TextLoader)
|
|
|
|
|
34 |
document2 = loader2.load()
|
35 |
|
36 |
+
loader3 = DirectoryLoader('/home/user/app/file/', glob="./*.docx", loader_cls=Docx2txtLoader)
|
|
|
|
|
37 |
document3 = loader3.load()
|
38 |
|
39 |
document1.extend(document2)
|
40 |
document1.extend(document3)
|
41 |
|
42 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
43 |
+
separator="\n",
|
44 |
+
chunk_size=1000,
|
45 |
+
chunk_overlap=200,
|
46 |
+
length_function=len)
|
47 |
|
48 |
docs = text_splitter.split_documents(document1)
|
49 |
embeddings = OpenAIEmbeddings()
|
|
|
53 |
|
54 |
return "File(s) processed successfully!"
|
55 |
|
|
|
56 |
def formatted_response(docs, response):
|
57 |
formatted_output = response + "\n\nSources"
|
58 |
|
59 |
for i, doc in enumerate(docs):
|
60 |
+
source_info = doc.metadata.get('source', 'Unknown source')
|
61 |
+
page_info = doc.metadata.get('page', None)
|
62 |
|
63 |
+
file_name = source_info.split('/')[-1].strip()
|
|
|
64 |
|
65 |
if page_info is not None:
|
66 |
formatted_output += f"\n{file_name}\tpage no {page_info}"
|
|
|
69 |
|
70 |
return formatted_output
|
71 |
|
|
|
72 |
def search_file(question):
|
73 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
74 |
from langchain.vectorstores import FAISS
|
|
|
82 |
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
|
83 |
docs = file_db.similarity_search(question)
|
84 |
|
85 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
86 |
chain = load_qa_chain(llm, chain_type="stuff")
|
87 |
+
|
88 |
with get_openai_callback() as cb:
|
89 |
response = chain.run(input_documents=docs, question=question)
|
90 |
print(cb)
|
91 |
|
92 |
return formatted_response(docs, response)
|
93 |
|
94 |
+
def local_search(question):
|
|
|
95 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
96 |
from langchain.vectorstores import FAISS
|
97 |
from langchain.chains.question_answering import load_qa_chain
|
|
|
104 |
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
|
105 |
docs = file_db.similarity_search(question)
|
106 |
|
107 |
+
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
|
|
|
|
108 |
chain = load_qa_chain(llm, chain_type="stuff")
|
109 |
+
|
110 |
with get_openai_callback() as cb:
|
111 |
response = chain.run(input_documents=docs, question=question)
|
112 |
print(cb)
|
113 |
|
114 |
return formatted_response(docs, response)
|
115 |
|
|
|
116 |
def delete_file():
|
117 |
+
|
118 |
import shutil
|
119 |
|
120 |
path1 = "/home/user/app/file/"
|
|
|
128 |
except:
|
129 |
return "Already Deleted"
|
130 |
|
131 |
+
def soap_refresh():
|
132 |
+
import os
|
133 |
+
import gradio as gr
|
134 |
|
135 |
+
destination_folder = "/home/user/app/soap_docs/"
|
136 |
+
if not os.path.exists(destination_folder):
|
137 |
+
os.makedirs(destination_folder)
|
138 |
|
139 |
+
directory = '/home/user/app/soap_docs/'
|
|
|
140 |
file_list = []
|
141 |
+
|
142 |
for root, dirs, files in os.walk(directory):
|
143 |
for file in files:
|
144 |
file_list.append(file)
|
145 |
return gr.Dropdown.update(choices=file_list)
|
146 |
|
147 |
+
def sbar_refresh():
|
148 |
+
import os
|
149 |
+
import gradio as gr
|
150 |
|
151 |
+
destination_folder = "/home/user/app/sbar_docs/"
|
152 |
+
if not os.path.exists(destination_folder):
|
153 |
+
os.makedirs(destination_folder)
|
154 |
|
155 |
+
directory = '/home/user/app/sbar_docs/'
|
156 |
+
file_list = []
|
|
|
157 |
|
158 |
+
for root, dirs, files in os.walk(directory):
|
159 |
+
for file in files:
|
160 |
+
file_list.append(file)
|
161 |
+
return gr.Dropdown.update(choices=file_list)
|
162 |
|
163 |
+
def ask_soap(doc_name, question):
|
164 |
from langchain.llms import OpenAI
|
165 |
from langchain import PromptTemplate, LLMChain
|
166 |
+
from langchain.chat_models import ChatOpenAI
|
167 |
import openai
|
168 |
import docx
|
169 |
|
170 |
+
docx_path = "/home/user/app/soap_docs/" + doc_name
|
171 |
|
172 |
doc = docx.Document(docx_path)
|
173 |
extracted_text = "Extracted text:\n\n\n"
|
|
|
190 |
Answer: Let's think step by step."""
|
191 |
|
192 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
193 |
+
|
194 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
195 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
196 |
response = llm_chain.run(extracted_text)
|
197 |
|
198 |
return response
|
199 |
|
200 |
+
def ask_sbar(doc_name, question):
|
201 |
+
from langchain.llms import OpenAI
|
202 |
+
from langchain import PromptTemplate, LLMChain
|
203 |
+
from langchain.chat_models import ChatOpenAI
|
204 |
+
import openai
|
205 |
+
import docx
|
206 |
+
|
207 |
+
docx_path = "/home/user/app/sbar_docs/" + doc_name
|
208 |
+
|
209 |
+
doc = docx.Document(docx_path)
|
210 |
+
extracted_text = "Extracted text:\n\n\n"
|
211 |
+
|
212 |
+
for paragraph in doc.paragraphs:
|
213 |
+
extracted_text += paragraph.text + "\n"
|
214 |
+
|
215 |
+
question = (
|
216 |
+
"\n\nUse the 'Extracted text' to answer the following question:\n" + question
|
217 |
+
)
|
218 |
+
extracted_text += question
|
219 |
+
|
220 |
+
if extracted_text:
|
221 |
+
print(extracted_text)
|
222 |
+
else:
|
223 |
+
print("failed")
|
224 |
+
|
225 |
+
template = """Question: {question}
|
226 |
+
|
227 |
+
Answer: Let's think step by step."""
|
228 |
+
|
229 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
230 |
+
|
231 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
232 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
233 |
+
response = llm_chain.run(extracted_text)
|
234 |
+
|
235 |
+
return response
|
236 |
|
237 |
def search_gpt(question):
|
238 |
from langchain.llms import OpenAI
|
239 |
from langchain import PromptTemplate, LLMChain
|
240 |
+
from langchain.chat_models import ChatOpenAI
|
241 |
|
242 |
template = """Question: {question}
|
243 |
|
244 |
Answer: Let's think step by step."""
|
245 |
|
246 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
247 |
+
|
248 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
249 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
250 |
response = llm_chain.run(question)
|
251 |
|
252 |
return response
|
253 |
|
|
|
254 |
def local_gpt(question):
|
255 |
from langchain.llms import OpenAI
|
256 |
from langchain import PromptTemplate, LLMChain
|
257 |
+
from langchain.chat_models import ChatOpenAI
|
258 |
|
259 |
template = """Question: {question}
|
260 |
|
261 |
Answer: Let's think step by step."""
|
262 |
|
263 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
264 |
+
|
265 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
266 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
267 |
response = llm_chain.run(question)
|
268 |
|
269 |
return response
|
270 |
|
|
|
271 |
global output
|
|
|
|
|
272 |
|
273 |
def audio_text(filepath):
|
274 |
import openai
|
|
|
275 |
global output
|
276 |
|
277 |
audio = open(filepath, "rb")
|
|
|
280 |
|
281 |
return output
|
282 |
|
283 |
+
global soap_response
|
284 |
+
global sbar_response
|
285 |
|
286 |
+
def transcript_soap(text):
|
287 |
from langchain.llms import OpenAI
|
288 |
from langchain import PromptTemplate, LLMChain
|
289 |
+
from langchain.chat_models import ChatOpenAI
|
290 |
|
291 |
+
global soap_response
|
292 |
|
293 |
question = (
|
294 |
"Use the following context given below to generate a detailed SOAP Report:\n\n"
|
|
|
300 |
|
301 |
Answer: Let's think step by step."""
|
302 |
|
303 |
+
word_count = len(text.split())
|
304 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
305 |
+
|
306 |
+
if word_count < 2000:
|
307 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
308 |
+
elif word_count < 5000:
|
309 |
+
llm = ChatOpenAI(model="gpt-4")
|
310 |
+
else:
|
311 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
312 |
+
|
313 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
314 |
+
soap_response = llm_chain.run(question)
|
315 |
|
316 |
+
return soap_response
|
317 |
+
|
318 |
+
def transcript_sbar(text):
|
319 |
+
from langchain.llms import OpenAI
|
320 |
+
from langchain import PromptTemplate, LLMChain
|
321 |
+
from langchain.chat_models import ChatOpenAI
|
322 |
+
|
323 |
+
global sbar_response
|
324 |
|
325 |
+
question = (
|
326 |
+
"Use the following context given below to generate a detailed SBAR Report:\n\n"
|
327 |
+
)
|
328 |
+
question += text
|
329 |
+
print(question)
|
330 |
+
|
331 |
+
template = """Question: {question}
|
332 |
+
|
333 |
+
Answer: Let's think step by step."""
|
334 |
+
|
335 |
+
word_count = len(text.split())
|
336 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
337 |
+
|
338 |
+
if word_count < 2000:
|
339 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
340 |
+
elif word_count < 5000:
|
341 |
+
llm = ChatOpenAI(model="gpt-4")
|
342 |
+
else:
|
343 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
344 |
+
|
345 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
346 |
+
sbar_response = llm_chain.run(question)
|
347 |
+
|
348 |
+
return sbar_response
|
349 |
|
350 |
def text_soap():
|
351 |
from langchain.llms import OpenAI
|
352 |
from langchain import PromptTemplate, LLMChain
|
353 |
+
from langchain.chat_models import ChatOpenAI
|
354 |
|
355 |
global output
|
356 |
+
global soap_response
|
357 |
output = output
|
358 |
|
359 |
question = (
|
|
|
366 |
|
367 |
Answer: Let's think step by step."""
|
368 |
|
369 |
+
word_count = len(output.split())
|
370 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
371 |
+
|
372 |
+
if word_count < 2000:
|
373 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
374 |
+
elif word_count < 5000:
|
375 |
+
llm = ChatOpenAI(model="gpt-4")
|
376 |
+
else:
|
377 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
378 |
+
|
379 |
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
380 |
+
soap_response = llm_chain.run(question)
|
381 |
|
382 |
+
return soap_response
|
383 |
+
|
384 |
+
def text_sbar():
|
385 |
+
from langchain.llms import OpenAI
|
386 |
+
from langchain import PromptTemplate, LLMChain
|
387 |
+
from langchain.chat_models import ChatOpenAI
|
388 |
+
|
389 |
+
global output
|
390 |
+
global sbar_response
|
391 |
+
output = output
|
392 |
+
|
393 |
+
question = (
|
394 |
+
"Use the following context given below to generate a detailed SBAR Report:\n\n"
|
395 |
+
)
|
396 |
+
question += output
|
397 |
+
print(question)
|
398 |
|
399 |
+
template = """Question: {question}
|
400 |
+
|
401 |
+
Answer: Let's think step by step."""
|
402 |
|
403 |
+
word_count = len(output.split())
|
404 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
405 |
|
406 |
+
if word_count < 2000:
|
407 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
408 |
+
elif word_count < 5000:
|
409 |
+
llm = ChatOpenAI(model="gpt-4")
|
410 |
+
else:
|
411 |
+
llm = ChatOpenAI(model="gpt-4-32k")
|
412 |
+
|
413 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
414 |
+
sbar_response = llm_chain.run(question)
|
415 |
|
416 |
+
return sbar_response
|
417 |
+
|
418 |
+
def soap_docx(name):
|
419 |
+
global soap_response
|
420 |
+
soap_response = soap_response
|
421 |
import docx
|
422 |
+
import os
|
423 |
+
|
424 |
+
destination_folder = "/home/user/app/soap_docs/"
|
425 |
+
if not os.path.exists(destination_folder):
|
426 |
+
os.makedirs(destination_folder)
|
427 |
|
428 |
+
path = f"/home/user/app/soap_docs/SOAP_{name}.docx"
|
|
|
429 |
|
430 |
doc = docx.Document()
|
431 |
+
doc.add_paragraph(soap_response)
|
432 |
doc.save(path)
|
433 |
|
434 |
return "Successfully saved .docx File"
|
435 |
|
436 |
+
def sbar_docx(name):
|
437 |
+
global sbar_response
|
438 |
+
sbar_response = sbar_response
|
439 |
+
import docx
|
440 |
+
import os
|
441 |
+
|
442 |
+
destination_folder = "/home/user/app/sbar_docs/"
|
443 |
+
if not os.path.exists(destination_folder):
|
444 |
+
os.makedirs(destination_folder)
|
445 |
+
|
446 |
+
path = f"/home/user/app/sbar_docs/SBAR_{name}.docx"
|
447 |
+
|
448 |
+
doc = docx.Document()
|
449 |
+
doc.add_paragraph(sbar_response)
|
450 |
+
doc.save(path)
|
451 |
+
|
452 |
+
return "Successfully saved .docx File"
|
453 |
|
454 |
import gradio as gr
|
455 |
|
|
|
465 |
"""
|
466 |
|
467 |
with gr.Blocks(css=css) as demo:
|
468 |
+
gr.Markdown('<div class="centered">## Medical App</div>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
|
470 |
+
with gr.Tab("SOAP and SBAR Note Creation"):
|
471 |
+
with gr.Column(elem_classes="col"):
|
|
|
|
|
472 |
|
473 |
+
with gr.Tab("From Recorded Audio"):
|
474 |
+
with gr.Column():
|
|
|
|
|
475 |
|
476 |
+
mic_audio_input = gr.Audio(source="microphone", type="filepath", label="Speak to the Microphone")
|
477 |
+
mic_audio_button = gr.Button("Generate Transcript")
|
478 |
+
mic_audio_output = gr.Textbox(label="Output")
|
479 |
+
|
480 |
+
mic_text_soap_button = gr.Button("Generate SOAP Report")
|
481 |
+
mic_text_soap_output = gr.Textbox(label="Output")
|
482 |
+
mic_text_sbar_button = gr.Button("Generate SBAR Report")
|
483 |
+
mic_text_sbar_output = gr.Textbox(label="Output")
|
484 |
+
|
485 |
+
mic_docx_input = gr.Textbox(label="Enter the name of .docx File")
|
486 |
+
mic_soap_docx_button = gr.Button("Save SOAP .docx File")
|
487 |
+
mic_soap_docx_output = gr.Textbox(label="Output")
|
488 |
+
mic_sbar_docx_button = gr.Button("Save SBAR .docx File")
|
489 |
+
mic_sbar_docx_output = gr.Textbox(label="Output")
|
490 |
+
|
491 |
+
with gr.Tab("From Uploaded Audio"):
|
492 |
+
with gr.Column():
|
493 |
+
|
494 |
+
upload_audio_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File here")
|
495 |
+
upload_audio_button = gr.Button("Generate Transcript")
|
496 |
+
upload_audio_output = gr.Textbox(label="Output")
|
497 |
+
|
498 |
+
upload_text_soap_button = gr.Button("Generate SOAP Report")
|
499 |
+
upload_text_soap_output = gr.Textbox(label="Output")
|
500 |
+
upload_text_sbar_button = gr.Button("Generate SBAR Report")
|
501 |
+
upload_text_sbar_output = gr.Textbox(label="Output")
|
502 |
+
|
503 |
+
upload_docx_input = gr.Textbox(label="Enter the name of .docx File")
|
504 |
+
upload_soap_docx_button = gr.Button("Save SOAP .docx File")
|
505 |
+
upload_soap_docx_output = gr.Textbox(label="Output")
|
506 |
+
upload_sbar_docx_button = gr.Button("Save SBAR .docx File")
|
507 |
+
upload_sbar_docx_output = gr.Textbox(label="Output")
|
508 |
+
|
509 |
+
with gr.Tab("From Text Transcript"):
|
510 |
+
with gr.Column():
|
511 |
+
|
512 |
+
text_transcript_input = gr.Textbox(label="Enter your Transcript here")
|
513 |
+
|
514 |
+
text_text_soap_button = gr.Button("Generate SOAP Report")
|
515 |
+
text_text_soap_output = gr.Textbox(label="Output")
|
516 |
+
text_text_sbar_button = gr.Button("Generate SBAR Report")
|
517 |
+
text_text_sbar_output = gr.Textbox(label="Output")
|
518 |
+
|
519 |
+
text_docx_input = gr.Textbox(label="Enter the name of .docx File")
|
520 |
+
text_soap_docx_button = gr.Button("Save SOAP .docx File")
|
521 |
+
text_soap_docx_output = gr.Textbox(label="Output")
|
522 |
+
text_sbar_docx_button = gr.Button("Save SBAR .docx File")
|
523 |
+
text_sbar_docx_output = gr.Textbox(label="Output")
|
524 |
+
|
525 |
+
with gr.Tab("SOAP and SBAR Queries"):
|
526 |
+
with gr.Column(elem_classes="col"):
|
527 |
+
|
528 |
+
with gr.Tab("Query SOAP Reports"):
|
529 |
+
with gr.Column():
|
530 |
+
|
531 |
+
soap_refresh_button = gr.Button("Refresh")
|
532 |
+
ask_soap_input = gr.Dropdown(label="Choose File")
|
533 |
+
|
534 |
+
ask_soap_question = gr.Textbox(label="Enter Question here")
|
535 |
+
ask_soap_button = gr.Button("Submit")
|
536 |
+
ask_soap_output = gr.Textbox(label="Output")
|
537 |
+
|
538 |
+
with gr.Tab("Query SBAR Reports"):
|
539 |
+
with gr.Column():
|
540 |
|
541 |
+
sbar_refresh_button = gr.Button("Refresh")
|
542 |
+
ask_sbar_input = gr.Dropdown(label="Choose File")
|
543 |
+
|
544 |
+
ask_sbar_question = gr.Textbox(label="Enter Question here")
|
545 |
+
ask_sbar_button = gr.Button("Submit")
|
546 |
+
ask_sbar_output = gr.Textbox(label="Output")
|
547 |
+
|
548 |
+
with gr.Tab("All Queries"):
|
549 |
+
with gr.Column(elem_classes="col"):
|
550 |
+
|
551 |
+
local_search_input = gr.Textbox(label="Enter Question here")
|
552 |
+
local_search_button = gr.Button("Search")
|
553 |
+
local_search_output = gr.Textbox(label="Output")
|
554 |
+
|
555 |
+
local_gpt_button = gr.Button("Ask ChatGPT")
|
556 |
+
local_gpt_output = gr.Textbox(label="Output")
|
557 |
+
|
558 |
+
|
559 |
+
with gr.Tab("Documents Queries"):
|
560 |
+
with gr.Column(elem_classes="col"):
|
561 |
+
|
562 |
+
with gr.Tab("Upload and Process Documents"):
|
563 |
+
with gr.Column():
|
564 |
+
|
565 |
+
file_upload_input = gr.Files(label="Upload File(s) here")
|
566 |
+
file_upload_button = gr.Button("Upload")
|
567 |
+
file_upload_output = gr.Textbox(label="Output")
|
568 |
+
|
569 |
+
file_process_button = gr.Button("Process")
|
570 |
+
file_process_output = gr.Textbox(label="Output")
|
571 |
+
|
572 |
+
with gr.Tab("Query Documents"):
|
573 |
+
with gr.Column():
|
574 |
+
|
575 |
+
file_search_input = gr.Textbox(label="Enter Question here")
|
576 |
+
file_search_button = gr.Button("Search")
|
577 |
+
file_search_output = gr.Textbox(label="Output")
|
578 |
+
|
579 |
+
search_gpt_button = gr.Button("Ask ChatGPT")
|
580 |
+
search_gpt_output = gr.Textbox(label="Output")
|
581 |
+
|
582 |
+
file_delete_button = gr.Button("Delete")
|
583 |
+
file_delete_output = gr.Textbox(label="Output")
|
584 |
+
|
585 |
+
######################################################################################################
|
586 |
+
file_upload_button.click(save_file, inputs=file_upload_input, outputs=file_upload_output)
|
587 |
+
file_process_button.click(process_file, inputs=None, outputs=file_process_output)
|
588 |
+
|
589 |
+
file_search_button.click(search_file, inputs=file_search_input, outputs=file_search_output)
|
590 |
+
search_gpt_button.click(search_gpt, inputs=file_search_input, outputs=search_gpt_output)
|
591 |
+
|
592 |
+
file_delete_button.click(delete_file, inputs=None, outputs=file_delete_output)
|
593 |
+
|
594 |
+
######################################################################################################
|
595 |
+
local_search_button.click(local_search, inputs=local_search_input, outputs=local_search_output)
|
596 |
+
local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)
|
597 |
+
|
598 |
+
#######################################################################################################
|
599 |
+
soap_refresh_button.click(soap_refresh, inputs=None, outputs=ask_soap_input)
|
600 |
+
ask_soap_button.click(ask_soap, inputs=[ask_soap_input, ask_soap_question], outputs=ask_soap_output)
|
601 |
+
|
602 |
+
sbar_refresh_button.click(sbar_refresh, inputs=None, outputs=ask_sbar_input)
|
603 |
+
ask_sbar_button.click(ask_sbar, inputs=[ask_sbar_input, ask_sbar_question], outputs=ask_sbar_output)
|
604 |
+
|
605 |
+
####################################################################################################
|
606 |
+
mic_audio_button.click(audio_text, inputs=mic_audio_input, outputs=mic_audio_output)
|
607 |
+
|
608 |
+
mic_text_soap_button.click(text_soap, inputs=None, outputs=mic_text_soap_output)
|
609 |
+
mic_text_sbar_button.click(text_sbar, inputs=None, outputs=mic_text_sbar_output)
|
610 |
+
|
611 |
+
mic_soap_docx_button.click(soap_docx, inputs=mic_docx_input, outputs=mic_soap_docx_output)
|
612 |
+
mic_sbar_docx_button.click(sbar_docx, inputs=mic_docx_input, outputs=mic_sbar_docx_output)
|
613 |
+
####################################################################################################
|
614 |
+
upload_audio_button.click(audio_text, inputs=upload_audio_input, outputs=upload_audio_output)
|
615 |
+
|
616 |
+
upload_text_soap_button.click(text_soap, inputs=None, outputs=upload_text_soap_output)
|
617 |
+
upload_text_sbar_button.click(text_sbar, inputs=None, outputs=upload_text_sbar_output)
|
618 |
+
|
619 |
+
upload_soap_docx_button.click(soap_docx, inputs=upload_docx_input, outputs=upload_soap_docx_output)
|
620 |
+
upload_sbar_docx_button.click(sbar_docx, inputs=upload_docx_input, outputs=upload_sbar_docx_output)
|
621 |
+
###########################################################################################################
|
622 |
+
text_text_soap_button.click(transcript_soap, inputs=text_transcript_input, outputs=text_text_soap_output)
|
623 |
+
text_text_sbar_button.click(transcript_sbar, inputs=text_transcript_input, outputs=text_text_sbar_output)
|
624 |
+
|
625 |
+
text_soap_docx_button.click(soap_docx, inputs=text_docx_input, outputs=text_soap_docx_output)
|
626 |
+
text_sbar_docx_button.click(sbar_docx, inputs=text_docx_input, outputs=text_sbar_docx_output)
|
627 |
+
#############################################################################################################
|
628 |
|
629 |
demo.queue()
|
630 |
demo.launch()
|
631 |
+
|