Spaces:
Abhinay45
/
Runtime error

File size: 6,815 Bytes
b5753ae
156829e
f81d4f2
 
b5753ae
f81d4f2
b5753ae
 
 
48423a0
b5753ae
48423a0
b5753ae
194fffd
f81d4f2
 
 
def995e
f81d4f2
b5753ae
 
 
def995e
b5753ae
def995e
b5753ae
0db6209
 
 
156829e
 
0db6209
b5753ae
96324d6
285150b
156829e
96324d6
285150b
 
 
194fffd
f81d4f2
 
4584388
f81d4f2
 
 
 
 
 
b5753ae
f81d4f2
b5753ae
 
48423a0
b5753ae
156829e
 
 
 
 
 
 
 
 
 
b5753ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a8706b
b5753ae
156829e
b5753ae
 
 
 
 
 
ee48acc
b5753ae
0dfedcd
b5753ae
 
 
e886026
b5753ae
 
 
 
 
 
63c45d7
b5753ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c45d7
 
8d707c1
b5753ae
8d707c1
 
63c45d7
 
 
 
 
b5753ae
 
63c45d7
 
 
 
b5753ae
 
63c45d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5753ae
63c45d7
 
 
 
 
 
 
b5753ae
63c45d7
 
 
b5753ae
63c45d7
 
 
b5753ae
 
 
 
 
63c45d7
b5753ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import uuid
import time
import torch
import gradio as gr
import torchaudio
import subprocess
import numpy as np
from zipfile import ZipFile
from io import StringIO
import csv
import datetime
import langid
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import HfApi

# Set up environment and API
os.environ["COQUI_TOS_AGREED"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
repo_id = "your/repo-id"  # Replace with your repository ID

# Download and set up ffmpeg
print("Export newer ffmpeg binary for denoise filter")
ZipFile("ffmpeg.zip").extractall()
print("Make ffmpeg binary executable")
st = os.stat("ffmpeg")
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC)

# Load XTTS model
print("Downloading if not downloaded Coqui XTTS V2")
from TTS.utils.manage import ModelManager

model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
ModelManager().download_model(model_name)
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
print("XTTS downloaded")

config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))

model = Xtts.init_from_config(config)
model.load_checkpoint(
    config,
    checkpoint_path=os.path.join(model_path, "model.pth"),
    vocab_path=os.path.join(model_path, "vocab.json"),
    eval=True,
    use_deepspeed=False,  # Adjust based on your setup
)
# Ensure model is on CPU
model.cpu()

# Function for prediction
def predict(
    prompt,
    language,
    audio_file_pth,
    mic_file_path,
    use_mic,
    voice_cleanup,
    no_lang_auto_detect,
    agree,
):
    if not agree:
        gr.Warning("Please accept the Terms & Condition!")
        return (None, None, None, None)

    if language not in config.languages:
        gr.Warning(f"Language not supported. Please choose from dropdown.")
        return (None, None, None, None)

    language_predicted = langid.classify(prompt)[0].strip()
    if language_predicted == "zh":
        language_predicted = "zh-cn"

    if len(prompt) < 2:
        gr.Warning("Please provide a longer prompt text.")
        return (None, None, None, None)
    if len(prompt) > 200:
        gr.Warning("Text length limited to 200 characters.")
        return (None, None, None, None)

    if use_mic:
        if mic_file_path is None:
            gr.Warning("Please record your voice with Microphone.")
            return (None, None, None, None)
        speaker_wav = mic_file_path
    else:
        speaker_wav = audio_file_pth

    if voice_cleanup:
        try:
            out_filename = f"{speaker_wav}_{uuid.uuid4()}.wav"
            shell_command = f"./ffmpeg -y -i {speaker_wav} -af lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02 {out_filename}".split()
            subprocess.run(shell_command, capture_output=False, text=True, check=True)
            speaker_wav = out_filename
        except subprocess.CalledProcessError:
            print("Error filtering audio.")
    else:
        speaker_wav = speaker_wav

    try:
        metrics_text = ""
        t_latent = time.time()

        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
            audio_path=speaker_wav,
            gpt_cond_len=30,
            gpt_cond_chunk_len=4,
            max_ref_length=60
        )

        latent_calculation_time = time.time() - t_latent
        prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)

        print("Generating audio...")
        t0 = time.time()
        out = model.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=5.0,
            temperature=0.75,
        )
        inference_time = time.time() - t0
        metrics_text += f"Time to generate audio: {round(inference_time * 1000)} milliseconds\n"
        real_time_factor = (time.time() - t0) / out['wav'].shape[-1] * 24000
        metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
        torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)

    except RuntimeError as e:
        print(f"RuntimeError: {str(e)}")
        gr.Warning("An error occurred. Please try again.")
        return (None, None, None, None)

    return (
        gr.make_waveform(audio="output.wav"),
        "output.wav",
        metrics_text,
        speaker_wav,
    )

# Gradio interface
with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown("## XTTS Demo")
        with gr.Column():
            pass

    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Text Prompt",
                info="One or two sentences at a time. Up to 200 characters.",
                value="Hello! Try your best to upload quality audio.",
            )
            language_gr = gr.Dropdown(
                label="Language",
                choices=[
                    "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl",
                    "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi"
                ],
                value="en",
            )
            ref_gr = gr.Audio(
                label="Reference Audio",
                type="filepath",
                value="examples/female.wav",
            )
            mic_gr = gr.Audio(
                source="microphone",
                type="filepath",
                label="Use Microphone for Reference",
            )
            use_mic_gr = gr.Checkbox(
                label="Use Microphone",
                value=False,
            )
            clean_ref_gr = gr.Checkbox(
                label="Cleanup Reference Voice",
                value=False,
            )
            auto_det_lang_gr = gr.Checkbox(
                label="Disable Language Auto-Detect",
                value=False,
            )
            tos_gr = gr.Checkbox(
                label="Agree",
                value=False,
            )

            tts_button = gr.Button("Send")

        with gr.Column():
            video_gr = gr.Video(label="Waveform Visual")
            audio_gr = gr.Audio(label="Synthesized Audio", autoplay=True)
            out_text_gr = gr.Text(label="Metrics")
            ref_audio_gr = gr.Audio(label="Reference Audio Used")

    tts_button.click(
        predict,
        inputs=[input_text_gr, language_gr, ref_gr, mic_gr, use_mic_gr, clean_ref_gr, auto_det_lang_gr, tos_gr],
        outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr]
    )

demo.queue()
demo.launch(debug=True)