Spaces:
Runtime error
Runtime error
File size: 6,943 Bytes
c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 d7a8a79 c08ced7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
pipeline
)
from PIL import Image
import torch
import random
import json
import time
class MedicalImageAnalysisSystem:
def __init__(self):
print("Initializing system...")
# Check for CUDA availability
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {self.device}")
# Load models one at a time with progress messages
print("Loading tumor classifier...")
self.tumor_classifier_model = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_classifier",
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
self.tumor_classifier_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier")
print("Loading tumor radius detector...")
self.radius_model = AutoModelForImageClassification.from_pretrained(
"SIATCN/vit_tumor_radius_detection_finetuned",
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
self.radius_processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_radius_detection_finetuned")
print("Loading language model...")
# Using a smaller model for faster inference
self.llm = pipeline(
"text-generation",
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto",
model_kwargs={"low_cpu_mem_usage": True}
)
# Set models to evaluation mode
self.tumor_classifier_model.eval()
self.radius_model.eval()
print("System initialization complete!")
def generate_synthetic_metadata(self):
return {
"age": random.randint(25, 85),
"gender": random.choice(["Male", "Female"]),
"smoking_status": random.choice(["Never Smoker", "Former Smoker", "Current Smoker"]),
"drinking_status": random.choice(["Non-drinker", "Social Drinker", "Regular Drinker"]),
"medications": random.sample([
"Lisinopril", "Metformin", "Levothyroxine", "Amlodipine",
"Metoprolol", "Omeprazole", "Simvastatin", "Losartan"
], random.randint(0, 3))
}
def process_image(self, image):
if isinstance(image, str):
image = Image.open(image)
if image.mode != 'RGB':
image = image.convert('RGB')
return image.resize((224, 224))
@torch.no_grad()
def predict_tumor_presence(self, processed_image):
inputs = self.tumor_classifier_processor(processed_image, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outputs = self.tumor_classifier_model(**inputs)
predictions = torch.softmax(outputs.logits, dim=-1)
probs = predictions[0].cpu().tolist()
# Return just the predicted class instead of probabilities
return "tumor" if probs[1] > probs[0] else "non-tumor"
@torch.no_grad()
def predict_tumor_radius(self, processed_image):
inputs = self.radius_processor(processed_image, return_tensors="pt")
inputs = {k: v.to(self.device) for k, v in inputs.items()}
outputs = self.radius_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
predicted_label = predictions.argmax().item()
class_names = ["no-tumor", "0.5", "1.0", "1.5"]
# Return just the radius without confidence
return class_names[predicted_label]
def generate_llm_interpretation(self, tumor_presence, tumor_radius, metadata):
prompt = f"""<|system|>You are a medical AI assistant. Provide a clear and concise medical interpretation.</s>
<|user|>Analyze the following medical findings:
Image Analysis:
- Tumor Detection: {tumor_presence}
- Tumor Size: {tumor_radius} cm
Patient Profile:
- Age: {metadata['age']} years
- Gender: {metadata['gender']}
- Smoking: {metadata['smoking_status']}
- Alcohol: {metadata['drinking_status']}
- Current Medications: {', '.join(metadata['medications']) if metadata['medications'] else 'None'}
Provide a brief:
1. Key findings
2. Clinical recommendations
3. Follow-up plan</s>
<|assistant|>"""
response = self.llm(
prompt,
max_new_tokens=300,
temperature=0.7,
do_sample=True,
top_p=0.95,
num_return_sequences=1
)
return response[0]['generated_text'].split("<|assistant|>")[-1].strip()
def analyze_image(self, image):
try:
# Process image and generate metadata
processed_image = self.process_image(image)
metadata = self.generate_synthetic_metadata()
# Get predictions
tumor_presence = self.predict_tumor_presence(processed_image)
tumor_radius = self.predict_tumor_radius(processed_image)
# Generate interpretation
interpretation = self.generate_llm_interpretation(
tumor_presence,
tumor_radius,
metadata
)
# Format results
results = {
"metadata": metadata,
"tumor_presence": tumor_presence,
"tumor_radius": tumor_radius,
"interpretation": interpretation
}
return self.format_results(results)
except Exception as e:
return f"Error: {str(e)}"
def format_results(self, results):
return f"""
Patient Information:
{json.dumps(results['metadata'], indent=2)}
Image Analysis Results:
- Tumor Detection: {results['tumor_presence']}
- Tumor Size: {results['tumor_radius']} cm
Medical Assessment:
{results['interpretation']}
"""
def create_interface():
system = MedicalImageAnalysisSystem()
iface = gr.Interface(
fn=system.analyze_image,
inputs=[
gr.Image(type="pil", label="Upload Medical Image")
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20)
],
title="Medical Image Analysis System",
description="Upload a medical image for tumor analysis and recommendations.",
theme=gr.themes.Base()
)
return iface
if __name__ == "__main__":
print("Starting application...")
iface = create_interface()
iface.queue()
iface.launch(debug=True, share=True) |