Antoine245's picture
Update app.py
3ab5bd0
raw
history blame
890 Bytes
import torch
import gradio as gr
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
def predict(image):
classifier = pipeline(task="image-classification")
preds = classifier(image)
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
return preds
def format_output(output):
formatted_output = ""
for idx, pred in enumerate(output):
formatted_output += f"{idx}: Score: {pred['score']}, Label: {pred['label']}\n"
return formatted_output
description = """
"""
iface = gr.Interface(
fn=predict,
inputs=[
gr.components.Image(label="Image to classify", type="pil"),
],
outputs=gr.outputs.JSON(),
title="Image Classifier",
description=description
)
# Apply custom formatting to the JSON output
iface.outputs[0].format = format_output
iface.launch()