Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def predict(image): | |
classifier = pipeline(task="image-classification") | |
preds = classifier(image) | |
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] | |
return preds | |
def format_output(output): | |
formatted_output = "" | |
for idx, pred in enumerate(output): | |
formatted_output += f"{idx}: Score: {pred['score']}, Label: {pred['label']}\n" | |
return formatted_output | |
description = """ | |
""" | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.components.Image(label="Image to classify", type="pil"), | |
], | |
outputs=gr.outputs.JSON(), | |
title="Image Classifier", | |
description=description | |
) | |
# Apply custom formatting to the JSON output | |
iface.outputs[0].format = format_output | |
iface.launch() | |