Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,590 Bytes
f6fe860 3dc7f18 f6fe860 3dc7f18 f6fe860 3dc7f18 6842006 3dc7f18 f6fe860 3dc7f18 f6fe860 3dc7f18 6842006 3dc7f18 f6fe860 3dc7f18 6842006 3dc7f18 6842006 3dc7f18 f6fe860 3dc7f18 6842006 f6fe860 3dc7f18 b5da3d3 3dc7f18 b5da3d3 f6fe860 3dc7f18 6842006 3dc7f18 172e437 6842006 172e437 6842006 172e437 6842006 172e437 3dc7f18 6842006 3dc7f18 f6fe860 d810db5 3dc7f18 d810db5 3dc7f18 d810db5 3dc7f18 d810db5 f6fe860 3dc7f18 d810db5 8197187 3dc7f18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import spaces
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_WIDTH = 384
DEFAULT_HEIGHT = 384
PARALLEL_SIZE = 5
PATCH_SIZE = 16
# Load model and processor with error handling
def load_model():
try:
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Loading model on device: {device}")
vl_gpt = AutoModelForCausalLM.from_pretrained(
model_path,
language_config=language_config,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if device.type == "cuda" else torch.float32
).to(device)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
return vl_gpt, vl_chat_processor, device
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise RuntimeError("Failed to load model. Please check the model path and dependencies.")
try:
vl_gpt, vl_chat_processor, device = load_model()
tokenizer = vl_chat_processor.tokenizer
except RuntimeError as e:
raise e
# Helper functions with improved memory management
def generate(input_ids, width, height, cfg_weight=5, temperature=1.0, parallel_size=5, progress=None):
try:
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int, device=device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
with torch.no_grad():
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, 576), dtype=torch.int, device=device)
pkv = None
total_steps = 576
for i in range(total_steps):
if progress is not None:
progress((i + 1) / total_steps, desc="Generating image tokens")
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv
)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1)] * 2, dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
return generated_tokens
except RuntimeError as e:
logger.error(f"Generation error: {str(e)}")
raise RuntimeError("Generation failed due to memory constraints. Try reducing the parallel size.")
finally:
torch.cuda.empty_cache()
def unpack(patches, width, height, parallel_size=5):
try:
patches = patches.detach().to(device='cpu', dtype=torch.float32).numpy()
patches = patches.transpose(0, 2, 3, 1)
patches = np.clip((patches + 1) / 2 * 255, 0, 255)
return [Image.fromarray(patch.astype(np.uint8)) for patch in patches]
except Exception as e:
logger.error(f"Unpacking error: {str(e)}")
raise RuntimeError("Failed to process generated image data.")
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress()):
try:
if not prompt.strip():
raise gr.Error("Please enter a valid prompt.")
if progress is not None:
progress(0, desc="Initializing...")
torch.cuda.empty_cache()
# Seed management
if seed is None:
seed = torch.seed()
else:
seed = int(seed)
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed(seed)
messages = [{'role': '<|User|>', 'content': prompt}, {'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
) + vl_chat_processor.image_start_tag
input_ids = torch.tensor(tokenizer.encode(text), dtype=torch.long, device=device)
if progress is not None:
progress(0.1, desc="Generating image tokens...")
generated_tokens = generate(
input_ids,
DEFAULT_WIDTH,
DEFAULT_HEIGHT,
cfg_weight=guidance,
temperature=t2i_temperature,
parallel_size=PARALLEL_SIZE,
progress=progress
)
if progress is not None:
progress(0.9, desc="Processing images...")
patches = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[PARALLEL_SIZE, 8, DEFAULT_WIDTH // PATCH_SIZE, DEFAULT_HEIGHT // PATCH_SIZE]
)
images = unpack(patches, DEFAULT_WIDTH, DEFAULT_HEIGHT, PARALLEL_SIZE)
return images
except Exception as e:
logger.error(f"Generation failed: {str(e)}", exc_info=True)
if "index out of range" in str(e).lower():
raise gr.Error("Image generation failed due to internal error. Please try again with different parameters.")
else:
raise gr.Error(f"Image generation failed: {str(e)}")
def create_interface():
with gr.Blocks(title="Janus-Pro-7B Image Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Text-to-Image Generation with Janus-Pro-7B
**Generate high-quality images from text prompts using DeepSeek's advanced multimodal AI model.**
""")
with gr.Row():
with gr.Column(scale=3):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3
)
generate_btn = gr.Button("Generate Images", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
seed_input = gr.Number(
label="Seed",
value=None,
precision=0,
info="Leave empty for random seed"
)
guidance_slider = gr.Slider(
label="CFG Guidance Weight",
minimum=3,
maximum=10,
value=5,
step=0.5,
info="Higher values = more prompt adherence, lower values = more creativity"
)
temp_slider = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
info="Higher values = more randomness, lower values = more deterministic"
)
with gr.Column(scale=2):
output_gallery = gr.Gallery(
label="Generated Images",
columns=2,
height=600,
preview=True
)
status = gr.Textbox(
label="Status",
interactive=False
)
gr.Examples(
examples=[
["A futuristic cityscape at sunset with flying cars and holographic advertisements"],
["An astronaut riding a horse in photorealistic style"],
["A cute robotic cat sitting on a stack of ancient books, digital art"]
],
inputs=prompt_input
)
gr.Markdown("""
## Model Information
- **Model:** [Janus-Pro-7B](https://huggingface.co/deepseek-ai/Janus-Pro-7B)
- **Output Resolution:** 384x384 pixels
- **Parallel Generation:** 5 images per request
""")
# Footer Section
gr.Markdown("""
<hr style="margin-top: 2em; margin-bottom: 1em;">
<div style="text-align: center; color: #666; font-size: 0.9em;">
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #2563eb; text-decoration: none;">bilsimaging.com</a>
</div>
""")
# Visitor Badge
gr.HTML("""
<div style="text-align: center; margin-top: 1em;">
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FDeepseekJanusPro%2F">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FDeepseekJanusPro%2F&countColor=%23263759"
alt="Visitor Badge"
style="display: inline-block; margin: 0 auto;">
</a>
</div>
""")
generate_btn.click(
generate_image,
inputs=[prompt_input, seed_input, guidance_slider, temp_slider],
outputs=output_gallery,
api_name="generate"
)
demo.load(
fn=lambda: f"Device Status: {'GPU ✅' if device.type == 'cuda' else 'CPU ⚠️'}",
outputs=status,
queue=False
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True) |