File size: 9,175 Bytes
c47e784
e4a58ac
c47e784
 
e4a58ac
 
c47e784
 
4a2c956
c47e784
 
 
 
7c790c0
c47e784
7c790c0
61b9ff7
 
 
c47e784
 
e4a58ac
 
cbf69e8
c47e784
 
733fac9
0078e45
e4a58ac
 
09d4673
c47e784
caceb4b
c47e784
cbf69e8
c47e784
 
733fac9
 
 
 
cbf69e8
733fac9
ef244b4
733fac9
cbf69e8
 
 
 
e63ee0a
 
2d1a42e
c47e784
e63ee0a
c47e784
 
 
7c790c0
 
 
 
e63ee0a
 
733fac9
7c790c0
 
 
 
 
 
733fac9
c47e784
6726720
cade2a3
 
 
c47e784
cade2a3
 
 
 
cbf69e8
c47e784
 
 
 
 
 
 
cade2a3
c47e784
cade2a3
c47e784
 
 
cade2a3
 
 
 
 
 
 
c47e784
cade2a3
 
 
 
 
 
cbf69e8
ef244b4
 
cbf69e8
 
 
 
0269c32
cbf69e8
 
 
 
 
 
cade2a3
c47e784
 
0078e45
cbf69e8
6cdf548
0078e45
e63ee0a
 
ef244b4
733fac9
a00d592
8ecee14
cbf69e8
 
e63ee0a
 
 
 
f2b582c
c47e784
733fac9
e63ee0a
2d1a42e
cbf69e8
733fac9
e4a58ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os, copy
os.environ["RWKV_V7_ON"] = '1'
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)

from rwkv.model import RWKV

import gc, re
import gradio as gr
import base64
from io import BytesIO
import torch
import torch.nn.functional as F
from datetime import datetime
from transformers import CLIPImageProcessor
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

ctx_limit = 4096
gen_limit = 1000

########################## text rwkv ################################################################
from rwkv.utils import PIPELINE, PIPELINE_ARGS

title_v6 = "RWKV-x070-World-0.4B-v2.9-20250107-ctx4096"
model_path_v6 = hf_hub_download(repo_id="BlinkDL/rwkv-7-world", filename=f"{title_v6}.pth")
# model_path_v6 = f'/mnt/e/RWKV-Runner/models/{title_v6}' # conda activate torch2; cd /mnt/program/git-public/RWKV-Gradio-1; python app.py
model_v6 = RWKV(model=model_path_v6.replace('.pth',''), strategy='cuda fp16')
pipeline_v6 = PIPELINE(model_v6, "rwkv_vocab_v20230424")

args = model_v6.args

penalty_decay = 0.996

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}\n\nInput: {input}\n\nResponse:"""
    else:
        return f"""User: {instruction}\n\nAssistant:"""

def qa_prompt(instruction):
    instruction = instruction.strip().replace('\r\n','\n')
    instruction = re.sub(r'\n+', '\n', instruction)
    return f"User: {instruction}\n\nAssistant:"""

def evaluate(
    ctx,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here
    ctx = ctx.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):

        input_ids = pipeline_v6.encode(ctx)[-ctx_limit:] if i == 0 else [token]
        out, state = model_v6.forward(input_ids, state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline_v6.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= penalty_decay
            
        ttt = pipeline_v6.decode([token])
        www = 1
        if ttt in ' \t0123456789':
            www = 0
        #elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
        #    www = 0.5
        if token not in occurrence:
            occurrence[token] = www
        else:
            occurrence[token] += www
            
        tmp = pipeline_v6.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f'{timestamp} - vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
    del out
    del state
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

examples = [
    ["Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response:", gen_limit, 1, 0.3, 0.5, 0.5],
    ["Assistant: How can we persuade Elon Musk to follow you on Twitter? Let's think step by step and provide an expert response:", gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("東京で訪れるべき素晴らしい場所とその紹介をいくつか挙げてください。"), gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("Write a story using the following information.", "A man named Alex chops a tree down."), gen_limit, 1, 0.3, 0.5, 0.5],
    ["A few light taps upon the pane made her turn to the window. It had begun to snow again.", gen_limit, 1, 0.3, 0.5, 0.5],
    ['''Edward: I am Edward Elric from Fullmetal Alchemist.\n\nUser: Hello Edward. What have you been up to recently?\n\nEdward:''', gen_limit, 1, 0.3, 0.5, 0.5],
    [generate_prompt("Write a simple webpage. When a user clicks the button, it shows a random joke from a list of 4 jokes."), 500, 1, 0.3, 0.5, 0.5],
    ['''Japanese: 春の初め、桜の花が満開になる頃、小さな町の片隅にある古びた神社の境内は、特別な雰囲気に包まれていた。\n\nEnglish:''', gen_limit, 1, 0.3, 0.5, 0.5],
    ["En una pequeña aldea escondida entre las montañas de Andalucía, donde las calles aún conservaban el eco de antiguas leyendas, vivía un joven llamado Alejandro.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["Dans le cœur battant de Paris, sous le ciel teinté d'un crépuscule d'or et de pourpre, se tenait une petite librairie oubliée par le temps.", gen_limit, 1, 0.3, 0.5, 0.5],
    ["في تطور مذهل وغير مسبوق، أعلنت السلطات المحلية في العاصمة عن اكتشاف أثري قد يغير مجرى التاريخ كما نعرفه.", gen_limit, 1, 0.3, 0.5, 0.5],
    ['''“当然可以,大宇宙不会因为这五公斤就不坍缩了。”关一帆说,他还有一个没说出来的想法:也许大宇宙真的会因为相差一个原子的质量而由封闭转为开放。大自然的精巧有时超出想象,比如生命的诞生,就需要各项宇宙参数在几亿亿分之一精度上的精确配合。但程心仍然可以留下她的生态球,因为在那无数文明创造的无数小宇宙中,肯定有相当一部分不响应回归运动的号召,所以,大宇宙最终被夺走的质量至少有几亿吨,甚至可能是几亿亿亿吨。\n但愿大宇宙能够忽略这个误差。\n程心和关一帆进入了飞船,智子最后也进来了。她早就不再穿那身华丽的和服了,她现在身着迷彩服,再次成为一名轻捷精悍的战士,她的身上佩带着许多武器和生存装备,最引人注目的是那把插在背后的武士刀。\n“放心,我在,你们就在!”智子对两位人类朋友说。\n聚变发动机启动了,推进器发出幽幽的蓝光,''', gen_limit, 1, 0.3, 0.5, 0.5],
]

##################################################################################################################
with gr.Blocks(title=title_v6) as demo:
    gr.HTML(f"<div style=\"text-align: center;\">\n<h1>{title_v6} (!!! only 0.4B !!!)</h1>\n</div>")

    with gr.Tab("=== Base Model (Raw Generation) ==="):
        gr.Markdown(f"This is [RWKV-7 World v2.9](https://huggingface.co/BlinkDL/rwkv-7-world) 0.4B (L24-D1024) - a 100% attention-free RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM). Supports 100+ world languages and code. Check [400+ Github RWKV projects](https://github.com/search?o=desc&p=1&q=rwkv&s=updated&type=Repositories). *** Can try examples (bottom of page) *** (can edit them). Demo limited to ctxlen {ctx_limit}.")
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=2, label="Prompt", value="Assistant: How can we craft an engaging story featuring vampires on Mars? Let's think step by step and provide an expert response:")
                token_count = gr.Slider(10, gen_limit, label="Max Tokens", step=10, value=gen_limit)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.3)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.5)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.5)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=20, max_lines=100)
        data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, samples_per_page=50, label="Example Instructions", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])

demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)