DeepMind LMI Team
Internal change
9bdaa77
raw
history blame
8.67 kB
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Vectors and bases."""
import dataclasses
from typing import Sequence, Union, Optional, Iterable
import numpy as np
Name = Union[int, str]
Value = Union[int, float, bool, str, tuple]
@dataclasses.dataclass(frozen=True)
class BasisDirection:
"""Represents a basis direction (no magnitude) in a vector space.
Attributes:
name: a unique name for this direction.
value: used to hold a value one-hot-encoded by this direction. e.g.,
[BasisDirection("vs_1", True), BasisDirection("vs_1", False)] would be
basis directions of a subspace called "vs_1" which one-hot-encodes the
values True and False. If provided, considered part of the name for the
purpose of disambiguating directions.
"""
name: Name
value: Optional[Value] = None
def __str__(self):
if self.value is None:
return str(self.name)
return f"{self.name}:{self.value}"
def __lt__(self, other: "BasisDirection") -> bool:
try:
return (self.name, self.value) < (other.name, other.value)
except TypeError:
return str(self) < str(other)
@dataclasses.dataclass
class VectorInBasis:
"""A vector (or array of vectors) in a given basis.
When magnitudes are 1-d, this is a vector.
When magnitudes are (n+1)-d, this is an array of vectors,
where the -1th dimension is the basis dimension.
"""
basis_directions: Sequence[BasisDirection]
magnitudes: np.ndarray
def __post_init__(self):
"""Sort basis directions."""
if len(self.basis_directions) != self.magnitudes.shape[-1]:
raise ValueError(
"Last dimension of magnitudes must be the same as number "
f"of basis directions. Was {len(self.basis_directions)} "
f"and {self.magnitudes.shape[-1]}.")
sort_idx = np.argsort(self.basis_directions)
self.basis_directions = [self.basis_directions[i] for i in sort_idx]
self.magnitudes = np.take(self.magnitudes, sort_idx, -1)
def __add__(self, other: "VectorInBasis") -> "VectorInBasis":
if self.basis_directions != other.basis_directions:
raise TypeError(f"Adding incompatible bases: {self} + {other}")
magnitudes = self.magnitudes + other.magnitudes
return VectorInBasis(self.basis_directions, magnitudes)
def __radd__(self, other: "VectorInBasis") -> "VectorInBasis":
if self.basis_directions != other.basis_directions:
raise TypeError(f"Adding incompatible bases: {other} + {self}")
return self + other
def __sub__(self, other: "VectorInBasis") -> "VectorInBasis":
if self.basis_directions != other.basis_directions:
raise TypeError(f"Subtracting incompatible bases: {self} - {other}")
magnitudes = self.magnitudes - other.magnitudes
return VectorInBasis(self.basis_directions, magnitudes)
def __rsub__(self, other: "VectorInBasis") -> "VectorInBasis":
if self.basis_directions != other.basis_directions:
raise TypeError(f"Subtracting incompatible bases: {other} - {self}")
magnitudes = other.magnitudes - self.magnitudes
return VectorInBasis(self.basis_directions, magnitudes)
def __mul__(self, scalar: float) -> "VectorInBasis":
return VectorInBasis(self.basis_directions, self.magnitudes * scalar)
def __rmul__(self, scalar: float) -> "VectorInBasis":
return self * scalar
def __truediv__(self, scalar: float) -> "VectorInBasis":
return VectorInBasis(self.basis_directions, self.magnitudes / scalar)
def __neg__(self) -> "VectorInBasis":
return (-1) * self
def __eq__(self, other: "VectorInBasis") -> bool:
return ((self.basis_directions == other.basis_directions) and
(self.magnitudes.shape == other.magnitudes.shape) and
(np.all(self.magnitudes == other.magnitudes)))
@classmethod
def sum(cls, vectors: Sequence["VectorInBasis"]) -> "VectorInBasis":
return cls(vectors[0].basis_directions,
np.sum([x.magnitudes for x in vectors], axis=0))
@classmethod
def stack(cls,
vectors: Sequence["VectorInBasis"],
axis: int = 0) -> "VectorInBasis":
for v in vectors[1:]:
if v.basis_directions != vectors[0].basis_directions:
raise TypeError(f"Stacking incompatible bases: {vectors[0]} + {v}")
return cls(vectors[0].basis_directions,
np.stack([v.magnitudes for v in vectors], axis=axis))
def project(
self, basis: Union["VectorSpaceWithBasis", Sequence[BasisDirection]]
) -> "VectorInBasis":
"""Projects to the basis."""
if isinstance(basis, VectorSpaceWithBasis):
basis = basis.basis
components = []
for direction in basis:
if direction in self.basis_directions:
components.append(
self.magnitudes[..., self.basis_directions.index(direction)])
else:
components.append(np.zeros_like(self.magnitudes[..., 0]))
return VectorInBasis(list(basis), np.stack(components, axis=-1))
@dataclasses.dataclass
class VectorSpaceWithBasis:
"""A vector subspace in a given basis."""
basis: Sequence[BasisDirection]
def __post_init__(self):
"""Keep basis directions sorted."""
self.basis = sorted(self.basis)
@property
def num_dims(self) -> int:
return len(self.basis)
def __contains__(self, item: Union[VectorInBasis, BasisDirection]) -> bool:
if isinstance(item, BasisDirection):
return item in self.basis
return set(self.basis) == set(item.basis_directions)
def issubspace(self, other: "VectorSpaceWithBasis") -> bool:
return set(self.basis).issubset(set(other.basis))
def basis_vectors(self) -> Sequence[VectorInBasis]:
basis_vector_magnitudes = list(np.eye(self.num_dims))
return [VectorInBasis(self.basis, m) for m in basis_vector_magnitudes]
def vector_from_basis_direction(
self, basis_direction: BasisDirection) -> VectorInBasis:
i = self.basis.index(basis_direction)
return VectorInBasis(self.basis, np.eye(self.num_dims)[i])
def null_vector(self) -> VectorInBasis:
return VectorInBasis(self.basis, np.zeros(self.num_dims))
@classmethod
def from_names(cls, names: Sequence[Name]) -> "VectorSpaceWithBasis":
"""Creates a VectorSpace from a list of names for its basis directions."""
return cls([BasisDirection(n) for n in names])
@classmethod
def from_values(
cls,
name: Name,
values: Iterable[Value],
) -> "VectorSpaceWithBasis":
"""Creates a VectorSpace from a list of values for its basis directions."""
return cls([BasisDirection(name, v) for v in values])
def direct_sum(*vs: VectorSpaceWithBasis) -> VectorSpaceWithBasis:
"""Create a direct sum of the vector spaces.
Assumes the basis elements of all input vector spaces are
orthogonal to each other. Maintains the order of the bases.
Args:
*vs: the vector spaces to sum.
Returns:
the combined vector space.
Raises:
Value error in case of overlapping bases.
"""
# Take the union of all the bases:
total_basis = sum([v.basis for v in vs], [])
if len(total_basis) != len(set(total_basis)):
raise ValueError("Overlapping bases!")
return VectorSpaceWithBasis(total_basis)
def join_vector_spaces(*vs: VectorSpaceWithBasis) -> VectorSpaceWithBasis:
"""Joins a set of vector spaces allowing them to overlap.
Assumes the basis elements of all input vector spaces are
orthogonal to each other. Does not maintain the order of the bases but
sorts them.
Args:
*vs: the vector spaces to sum.
Returns:
the combined vector space.
"""
# Take the union of all the bases:
total_basis = list(set().union(*[set(v.basis) for v in vs]))
total_basis = sorted(total_basis)
return VectorSpaceWithBasis(total_basis)
def ensure_dims(
vs: VectorSpaceWithBasis,
num_dims: int,
name: str = "vector space",
) -> None:
"""Raises ValueError if vs has the wrong number of dimensions."""
if vs.num_dims != num_dims:
raise ValueError(f"{name} must have {num_dims=}, "
f"but got {vs.num_dims}: {vs.basis}")