RASP-Synthesis / craft /transformers.py
DeepMind LMI Team
Internal change
9bdaa77
raw
history blame
6.89 kB
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Pieces for making transformers."""
import abc
import dataclasses
from typing import Iterable, Optional, Sequence, Union
import numpy as np
from tracr.craft import bases
from tracr.craft import vectorspace_fns
project = vectorspace_fns.project
def _np_softmax(x, axis=-1):
x_max = np.max(x, axis=axis, keepdims=True)
return np.exp(x - x_max) / np.sum(np.exp(x - x_max), axis=axis, keepdims=True)
def _np_relu(x):
return np.where(x > 0, x, 0)
def relu(x: bases.VectorInBasis) -> bases.VectorInBasis:
return bases.VectorInBasis(x.basis_directions, _np_relu(x.magnitudes))
class Block(abc.ABC):
"""Transformer block, acting on a sequence of vector space elements.
Attributes:
residual_space: Vector space that contains all subspaces the Block interacts
with. This can be either the full residual space of a model or a subspace.
"""
residual_space: bases.VectorSpaceWithBasis
@abc.abstractmethod
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
"""Applies self to an input."""
@dataclasses.dataclass
class AttentionHead(Block):
"""A transformer attention head."""
w_qk: vectorspace_fns.ScalarBilinear
w_ov: vectorspace_fns.Linear
residual_space: Optional[bases.VectorSpaceWithBasis] = None
causal: bool = False
def __post_init__(self):
"""Infer residual stream and typecheck subspaces."""
if self.residual_space is None:
self.residual_space = bases.join_vector_spaces(self.w_qk.left_space,
self.w_qk.right_space,
self.w_ov.input_space,
self.w_ov.output_space)
assert self.w_qk.left_space.issubspace(self.residual_space)
assert self.w_qk.right_space.issubspace(self.residual_space)
assert self.w_ov.input_space.issubspace(self.residual_space)
assert self.w_ov.output_space.issubspace(self.residual_space)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
assert x in self.residual_space
# seq_len x query_space
queries = x.project(self.w_qk.left_space)
# seq_len x key_space
keys = x.project(self.w_qk.right_space)
attn_matrix = queries.magnitudes @ self.w_qk.matrix @ keys.magnitudes.T
if self.causal:
# The 1 gives us the matrix above the diagonal.
mask = np.triu(np.full_like(attn_matrix, -np.inf), 1)
attn_matrix = attn_matrix + mask
attn_weights = _np_softmax(attn_matrix) # seq_len_from, seq_len_to
values = self.w_ov_residual(x).magnitudes # seq_len_to, d_model
magnitudes = attn_weights @ values # seq_len_from, d_model
return bases.VectorInBasis(sorted(self.residual_space.basis), magnitudes)
def w_ov_residual(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
"""Wov but acting on the residual space."""
x = project(self.residual_space, self.w_ov.input_space)(x)
out = self.w_ov(x)
return project(self.w_ov.output_space, self.residual_space)(out)
@property
def num_heads(self) -> int:
return 1
def as_multi(self) -> "MultiAttentionHead":
return MultiAttentionHead([self])
@dataclasses.dataclass
class MultiAttentionHead(Block):
"""Applies attention heads in parallel."""
sub_blocks: list[Union[AttentionHead, "MultiAttentionHead"]]
def __post_init__(self):
spaces = [block.residual_space for block in self.sub_blocks]
self.residual_space, *others = spaces
assert all(s == self.residual_space for s in others)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
# each element is seq_len x embedding
outs = [block.apply(x) for block in self.sub_blocks]
return bases.VectorInBasis.sum(outs) # seq_len x embedding
@property
def num_heads(self) -> int:
return sum(sub_block.num_heads for sub_block in self.sub_blocks)
def heads(self) -> Iterable[AttentionHead]:
for sub_block in self.sub_blocks:
if isinstance(sub_block, AttentionHead):
yield sub_block
elif isinstance(sub_block, MultiAttentionHead):
yield from sub_block.heads()
else:
raise NotImplementedError()
def as_multi(self) -> "MultiAttentionHead":
return self
@dataclasses.dataclass
class MLP(Block):
"""A transformer MLP block."""
fst: vectorspace_fns.Linear
snd: vectorspace_fns.Linear
residual_space: Optional[bases.VectorSpaceWithBasis] = None
def __post_init__(self):
"""Typecheck subspaces."""
if self.residual_space is None:
self.residual_space = bases.join_vector_spaces(self.fst.input_space,
self.snd.output_space)
assert self.fst.output_space == self.snd.input_space
assert self.fst.input_space.issubspace(self.residual_space)
assert self.snd.output_space.issubspace(self.residual_space)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
assert x in self.residual_space
x = project(self.residual_space, self.fst.input_space)(x)
hidden = self.fst(x)
hidden = relu(hidden)
out = self.snd(hidden)
return project(self.snd.output_space, self.residual_space)(out)
@classmethod
def combine_in_parallel(cls, mlps: Sequence["MLP"]) -> "MLP":
fst = vectorspace_fns.Linear.combine_in_parallel(
[block.fst for block in mlps])
snd = vectorspace_fns.Linear.combine_in_parallel(
[block.snd for block in mlps])
return cls(fst=fst, snd=snd, residual_space=None)
# Block that fits into a half-layer, without residual connections.
HalfLayerBlock = Union[MLP, AttentionHead, MultiAttentionHead]
@dataclasses.dataclass
class SeriesWithResiduals(Block):
"""A series of blocks with residual connections."""
blocks: list[HalfLayerBlock]
def __post_init__(self):
spaces = [block.residual_space for block in self.blocks]
self.residual_space = bases.join_vector_spaces(*spaces)
def apply(self, x: bases.VectorInBasis) -> bases.VectorInBasis:
x = x.project(self.residual_space)
for block in self.blocks:
x_in = x.project(block.residual_space)
x_out = block.apply(x_in).project(self.residual_space)
x = x + x_out
return x