Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,814 Bytes
6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf 2dc971f 6bb1bdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
{
"ADMET_Caco2_Wang": {
"task_type": "regression",
"task_name": "Drug Permeability",
"description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
"url": "https://tdcommons.ai/single_pred_tasks/adme#caco-2-cell-effective-permeability-wang-et-al",
"num_molecules": 906
},
"ADMET_Bioavailability_Ma": {
"task_type": "classification",
"task_name": "Drug Oral Bioavailability",
"description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
"url": "https://tdcommons.ai/single_pred_tasks/adme#bioavailability-ma-et-al",
"num_molecules": 640
},
"ADMET_Lipophilicity_AstraZeneca": {
"task_type": "regression",
"task_name": "Drug Lipophilicity",
"description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
"url": "https://tdcommons.ai/single_pred_tasks/adme#lipophilicity-astrazeneca",
"num_molecules": 4200
},
"ADMET_Solubility_AqSolDB": {
"task_type": "regression",
"task_name": "Drug Aqueous Solubility",
"description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
"url": "https://tdcommons.ai/single_pred_tasks/adme#solubility-aqsoldb",
"num_molecules": 9982
},
"ADMET_HIA_Hou": {
"task_type": "classification",
"task_name": "Drug Human Intestinal Absorption",
"description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
"url": "https://tdcommons.ai/single_pred_tasks/adme#hia-human-intestinal-absorption-hou-et-al",
"num_molecules": 578
},
"ADMET_Pgp_Broccatelli": {
"task_type": "classification",
"task_name": "P-glycoprotein Inhibition",
"description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
"url": "https://tdcommons.ai/single_pred_tasks/adme#pgp-p-glycoprotein-inhibition-broccatelli-et-al",
"num_molecules": 1212
},
"ADMET_BBB_Martins": {
"task_type": "classification",
"task_name": "Blood-Brain Barrier Permeability",
"description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
"url": "https://tdcommons.ai/single_pred_tasks/adme#bbb-blood-brain-barrier-martins-et-al",
"num_molecules": 1915
},
"ADMET_PPBR_AZ": {
"task_type": "regression",
"task_name": "Plasma Protein Binding Rate",
"description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
"url": "https://tdcommons.ai/single_pred_tasks/adme#ppbr-plasma-protein-binding-rate-astrazeneca",
"num_molecules": 1797
},
"ADMET_VDss_Lombardo": {
"task_type": "regression",
"task_name": "Volume of Distribution at Steady State",
"description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
"url": "https://tdcommons.ai/single_pred_tasks/adme#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al",
"num_molecules": 1130
},
"ADMET_CYP2C9_Veith": {
"task_type": "classification",
"task_name": "CYP2C9 Inhibition",
"description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2c9-inhibition-veith-et-al",
"num_molecules": 12092
},
"ADMET_CYP2D6_Veith": {
"task_type": "classification",
"task_name": "CYP2D6 Inhibition",
"description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2d6-inhibition-veith-et-al",
"num_molecules": 13130
},
"ADMET_CYP3A4_Veith": {
"task_type": "classification",
"task_name": "CPY3A4 Inhibition",
"description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-3a4-inhibition-veith-et-al",
"num_molecules": 12328
},
"ADMET_CYP2C9_Substrate_CarbonMangels": {
"task_type": "classification",
"task_name": "CYP2C9 Substrate",
"description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2c9-substrate-carbon-mangels-et-al",
"num_molecules": 666
},
"ADMET_CYP2D6_Substrate_CarbonMangels": {
"task_type": "classification",
"task_name": "CYP2D6 Substrate",
"description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2d6-substrate-carbon-mangels-et-al",
"num_molecules": 664
},
"ADMET_CYP3A4_Substrate_CarbonMangels": {
"task_type": "classification",
"task_name": "CYP3A4 Substrate",
"description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
"url": "https://tdcommons.ai/single_pred_tasks/adme#cyp3a4-substrate-carbon-mangels-et-al",
"num_molecules": 667
},
"ADMET_Half_Life_Obach": {
"task_type": "regression",
"task_name": "Drug Half-Life Duration",
"description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
"url": "https://tdcommons.ai/single_pred_tasks/adme#half-life-obach-et-al",
"num_molecules": 667
},
"ADMET_Clearance_Hepatocyte_AZ": {
"task_type": "regression",
"task_name": "Drug Clearance from Hepatocyte Experiments",
"description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
"num_molecules": 1020
},
"ADMET_Clearance_Microsome_AZ": {
"task_type": "regression",
"task_name": "Drug Clearance from Microsome Experiments",
"description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
"url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
"num_molecules": 1102
},
"ADMET_LD50_Zhu": {
"task_type": "regression",
"task_name": "Drug Acute Toxicity",
"description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
"url": "https://tdcommons.ai/single_pred_tasks/tox#acute-toxicity-ld50",
"num_molecules": 7385
},
"ADMET_hERG": {
"task_type": "classification",
"task_name": "hERG Channel Blockage",
"description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
"url": "https://tdcommons.ai/single_pred_tasks/tox#herg-blockers",
"num_molecules": 648
},
"ADMET_AMES": {
"task_type": "classification",
"task_name": "Drug Mutagenicity",
"description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
"url": "https://tdcommons.ai/single_pred_tasks/tox#ames-mutagenicity",
"num_molecules": 7255
},
"ADMET_DILI": {
"task_type": "classification",
"task_name": "Drug-Induced Liver Injury",
"description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
"url": "https://tdcommons.ai/single_pred_tasks/tox#dili-drug-induced-liver-injury",
"num_molecules": 475
}
} |