File size: 8,814 Bytes
6bb1bdf
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
 
2dc971f
6bb1bdf
2dc971f
6bb1bdf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
{
    "ADMET_Caco2_Wang": {
        "task_type": "regression",
        "task_name": "Drug Permeability",
        "description": "predict drug permeability, measured in cm/s, using the Caco-2 cell line as an in vitro model to simulate human intestinal tissue permeability",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#caco-2-cell-effective-permeability-wang-et-al",
        "num_molecules": 906
    },
    "ADMET_Bioavailability_Ma": {
        "task_type": "classification",
        "task_name": "Drug Oral Bioavailability",
        "description": "predict oral bioavailability with binary labels, indicating the rate and extent a drug becomes available at its site of action",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#bioavailability-ma-et-al",
        "num_molecules": 640
    },
    "ADMET_Lipophilicity_AstraZeneca": {
        "task_type": "regression",
        "task_name": "Drug Lipophilicity",
        "description": "predict lipophilicity with continuous labels, measured as a log-ratio, indicating a drug's ability to dissolve in lipid environments",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#lipophilicity-astrazeneca",
        "num_molecules": 4200
    },
    "ADMET_Solubility_AqSolDB": {
        "task_type": "regression",
        "task_name": "Drug Aqueous Solubility",
        "description": "predict aqueous solubility with continuous labels, measured in log mol/L, indicating a drug's ability to dissolve in water",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#solubility-aqsoldb",
        "num_molecules": 9982
    },
    "ADMET_HIA_Hou": {
        "task_type": "classification",
        "task_name": "Drug Human Intestinal Absorption",
        "description": "predict human intestinal absorption (HIA) with binary labels, indicating a drug's ability to be absorbed into the bloodstream",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#hia-human-intestinal-absorption-hou-et-al",
        "num_molecules": 578
    },
    "ADMET_Pgp_Broccatelli": {
        "task_type": "classification",
        "task_name": "P-glycoprotein Inhibition",
        "description": "predict P-glycoprotein (Pgp) inhibition with binary labels, indicating a drug's potential to alter bioavailability and overcome multidrug resistance",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#pgp-p-glycoprotein-inhibition-broccatelli-et-al",
        "num_molecules": 1212
    },
    "ADMET_BBB_Martins": {
        "task_type": "classification",
        "task_name": "Blood-Brain Barrier Permeability",
        "description": "predict blood-brain barrier permeability with binary labels, indicating a drug's ability to penetrate the barrier to reach the brain",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#bbb-blood-brain-barrier-martins-et-al",
        "num_molecules": 1915
    },
    "ADMET_PPBR_AZ": {
        "task_type": "regression",
        "task_name": "Plasma Protein Binding Rate",
        "description": "predict plasma protein binding rate with continuous labels, indicating the percentage of a drug bound to plasma proteins in the blood",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#ppbr-plasma-protein-binding-rate-astrazeneca",
        "num_molecules": 1797
    },
    "ADMET_VDss_Lombardo": {
        "task_type": "regression",
        "task_name": "Volume of Distribution at Steady State",
        "description": "predict the volume of distribution at steady state (VDss), indicating drug concentration in tissues versus blood",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#vdss-volumn-of-distribution-at-steady-state-lombardo-et-al",
        "num_molecules": 1130
    },
    "ADMET_CYP2C9_Veith": {
        "task_type": "classification",
        "task_name": "CYP2C9 Inhibition",
        "description": "predict CYP2C9 inhibition with binary labels, indicating the drug's ability to inhibit the CYP2C9 enzyme involved in metabolism",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2c9-inhibition-veith-et-al",
        "num_molecules": 12092
    },
    "ADMET_CYP2D6_Veith": {
        "task_type": "classification",
        "task_name": "CYP2D6 Inhibition",
        "description": "predict CYP2D6 inhibition with binary labels, indicating the drug's potential to inhibit the CYP2D6 enzyme involved in metabolism",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-2d6-inhibition-veith-et-al",
        "num_molecules": 13130
    },
    "ADMET_CYP3A4_Veith": {
        "task_type": "classification",
        "task_name": "CPY3A4 Inhibition",
        "description": "predict CPY3A4 inhibition with binary labels, indicating the drug's ability to inhibit the CPY3A4 enzyme involved in metabolism",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp-p450-3a4-inhibition-veith-et-al",
        "num_molecules": 12328
    },
    "ADMET_CYP2C9_Substrate_CarbonMangels": {
        "task_type": "classification",
        "task_name": "CYP2C9 Substrate",
        "description": "predict whether a drug is a substrate of the CYP2C9 enzyme with binary labels, indicating its potential to be metabolized",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2c9-substrate-carbon-mangels-et-al",
        "num_molecules": 666
    },
    "ADMET_CYP2D6_Substrate_CarbonMangels": {
        "task_type": "classification",
        "task_name": "CYP2D6 Substrate",
        "description": "predict whether a drug is a substrate of the CYP2D6 enzyme with binary labels, indicating its potential to be metabolized",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp2d6-substrate-carbon-mangels-et-al",
        "num_molecules": 664
    },
    "ADMET_CYP3A4_Substrate_CarbonMangels": {
        "task_type": "classification",
        "task_name": "CYP3A4 Substrate",
        "description": "predict whether a drug is a substrate of the CYP3A4 enzyme with binary labels, indicating its potential to be metabolized",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#cyp3a4-substrate-carbon-mangels-et-al",
        "num_molecules": 667
    },
    "ADMET_Half_Life_Obach": {
        "task_type": "regression",
        "task_name": "Drug Half-Life Duration",
        "description": "predict the half-life duration of a drug, measured in hours, indicating the time for its concentration to reduce by half",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#half-life-obach-et-al",
        "num_molecules": 667
    },
    "ADMET_Clearance_Hepatocyte_AZ": {
        "task_type": "regression",
        "task_name": "Drug Clearance from Hepatocyte Experiments",
        "description": "predict drug clearance, measured in \u03bcL/min/10^6 cells, from hepatocyte experiments, indicating the rate at which the drug is removed from body",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
        "num_molecules": 1020
    },
    "ADMET_Clearance_Microsome_AZ": {
        "task_type": "regression",
        "task_name": "Drug Clearance from Microsome Experiments",
        "description": "predict drug clearance, measured in mL/min/g, from microsome experiments, indicating the rate at which the drug is removed from body",
        "url": "https://tdcommons.ai/single_pred_tasks/adme#clearance-astrazeneca",
        "num_molecules": 1102
    },
    "ADMET_LD50_Zhu": {
        "task_type": "regression",
        "task_name": "Drug Acute Toxicity",
        "description": "predict the acute toxicity of a drug, measured as the dose leading to lethal effects in log(kg/mol)",
        "url": "https://tdcommons.ai/single_pred_tasks/tox#acute-toxicity-ld50",
        "num_molecules": 7385
    },
    "ADMET_hERG": {
        "task_type": "classification",
        "task_name": "hERG Channel Blockage",
        "description": "predict whether a drug blocks the hERG channel, which is crucial for heart rhythm, potentially leading to adverse effects",
        "url": "https://tdcommons.ai/single_pred_tasks/tox#herg-blockers",
        "num_molecules": 648
    },
    "ADMET_AMES": {
        "task_type": "classification",
        "task_name": "Drug Mutagenicity",
        "description": "predict whether a drug is mutagenic with binary labels, indicating its ability to induce genetic alterations",
        "url": "https://tdcommons.ai/single_pred_tasks/tox#ames-mutagenicity",
        "num_molecules": 7255
    },
    "ADMET_DILI": {
        "task_type": "classification",
        "task_name": "Drug-Induced Liver Injury",
        "description": "predict whether a drug can cause liver injury with binary labels, indicating its potential for hepatotoxicity",
        "url": "https://tdcommons.ai/single_pred_tasks/tox#dili-drug-induced-liver-injury",
        "num_molecules": 475
    }
}