feiyang-cai's picture
Update utils.py
4dab948 verified
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import os
from typing import Optional, Dict, Sequence
import transformers
from peft import PeftModel
import torch
from dataclasses import dataclass, field
from huggingface_hub import hf_hub_download
import json
import pandas as pd
from datasets import Dataset
from tqdm import tqdm
import spaces
from rdkit import RDLogger, Chem
# Suppress RDKit INFO messages
RDLogger.DisableLog('rdApp.*')
DEFAULT_PAD_TOKEN = "[PAD]"
device_map = "cuda"
def compute_rank(prediction,raw=False,alpha=1.0):
valid_score = [[k for k in range(len(prediction[j]))] for j in range(len(prediction))]
invalid_rates = [0 for k in range(len(prediction[0]))]
rank = {}
highest = {}
for j in range(len(prediction)):
for k in range(len(prediction[j])):
if prediction[j][k] == "":
valid_score[j][k] = 10 + 1
invalid_rates[k] += 1
de_error = [i[0] for i in sorted(list(zip(prediction[j], valid_score[j])), key=lambda x: x[1]) if i[0] != ""]
prediction[j] = list(set(de_error))
prediction[j].sort(key=de_error.index)
for k, data in enumerate(prediction[j]):
if data in rank:
rank[data] += 1 / (alpha * k + 1)
else:
rank[data] = 1 / (alpha * k + 1)
if data in highest:
highest[data] = min(k,highest[data])
else:
highest[data] = k
return rank,invalid_rates
@dataclass
class DataCollatorForCausalLMEval(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
reactant_start_str: str
product_start_str: str
end_str: str
def augment_molecule(self, molecule: str) -> str:
return self.sme.augment([molecule])[0]
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
srcs = instances[0]['src']
task_type = instances[0]['task_type']
if task_type == 'retrosynthesis':
src_start_str = self.product_start_str
tgt_start_str = self.reactant_start_str
else:
src_start_str = self.reactant_start_str
tgt_start_str = self.product_start_str
generation_prompts = []
generation_prompt = f"{src_start_str}{srcs}{self.end_str}{tgt_start_str}"
generation_prompts.append(generation_prompt)
data_dict = {
'generation_prompts': generation_prompts
}
return data_dict
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
non_special_tokens = None,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + tokenizer.add_tokens(non_special_tokens)
num_old_tokens = model.get_input_embeddings().weight.shape[0]
num_new_tokens = len(tokenizer) - num_old_tokens
if num_new_tokens == 0:
return
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings_data = model.get_input_embeddings().weight.data
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
print(f"Resized tokenizer and embedding from {num_old_tokens} to {len(tokenizer)} tokens.")
class ReactionPredictionModel():
def __init__(self, candidate_models):
for model in candidate_models:
if "retro" in model:
self.tokenizer = AutoTokenizer.from_pretrained(
candidate_models[list(candidate_models.keys())[0]],
padding_side="right",
use_fast=True,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.load_retro_model(candidate_models[model])
else:
self.tokenizer = AutoTokenizer.from_pretrained(
candidate_models[list(candidate_models.keys())[0]],
padding_side="right",
use_fast=True,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.load_forward_model(candidate_models[model])
string_template_path = hf_hub_download(candidate_models[list(candidate_models.keys())[0]], filename="string_template.json", token = os.environ.get("TOKEN"))
string_template = json.load(open(string_template_path, 'r'))
reactant_start_str = string_template['REACTANTS_START_STRING']
product_start_str = string_template['PRODUCTS_START_STRING']
end_str = string_template['END_STRING']
self.data_collator = DataCollatorForCausalLMEval(
tokenizer=self.tokenizer,
source_max_len=512,
target_max_len=512,
reactant_start_str=reactant_start_str,
product_start_str=product_start_str,
end_str=end_str,
)
def load_retro_model(self, model_path):
# our retro model is lora model
config = AutoConfig.from_pretrained(
"ChemFM/ChemFM-3B",
trust_remote_code=True,
token=os.environ.get("TOKEN")
)
base_model = AutoModelForCausalLM.from_pretrained(
"ChemFM/ChemFM-3B",
config=config,
trust_remote_code=True,
device_map=device_map,
token = os.environ.get("TOKEN")
)
# we should resize the embedding layer of the base model to match the adapter's tokenizer
special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=self.tokenizer,
model=base_model
)
base_model.config.pad_token_id = self.tokenizer.pad_token_id
# load the adapter model
self.retro_model = PeftModel.from_pretrained(
base_model,
model_path,
token = os.environ.get("TOKEN")
)
self.retro_model.to("cuda")
self.retro_model.eval()
def load_forward_model(self, model_path):
config = AutoConfig.from_pretrained(
model_path,
device_map=device_map,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
self.forward_model = AutoModelForCausalLM.from_pretrained(
model_path,
config=config,
device_map=device_map,
trust_remote_code=True,
token = os.environ.get("TOKEN")
)
# the finetune tokenizer could be in different size with pretrain tokenizer, and also, we need to add PAD_TOKEN
special_tokens_dict = dict(pad_token=DEFAULT_PAD_TOKEN)
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=self.tokenizer,
model=self.forward_model
)
self.forward_model.config.pad_token_id = self.tokenizer.pad_token_id
self.forward_model.to("cuda")
self.forward_model.eval()
def predict(self, test_loader, task_type):
predictions = []
for i, batch in tqdm(enumerate(test_loader), total=len(test_loader), desc="Evaluating"):
generation_prompts = batch['generation_prompts'][0]
inputs = self.tokenizer(generation_prompts, return_tensors="pt", padding=True, truncation=True)
del inputs['token_type_ids']
if task_type == "retrosynthesis":
inputs = {k: v.to(self.retro_model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.retro_model.generate(**inputs, max_length=512, num_return_sequences=10,
do_sample=False, num_beams=10,
eos_token_id=self.tokenizer.eos_token_id,
early_stopping='never',
pad_token_id=self.tokenizer.pad_token_id,
length_penalty=0.0,
)
else:
inputs = {k: v.to(self.forward_model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.forward_model.generate(**inputs, max_length=512, num_return_sequences=10,
do_sample=False, num_beams=10,
eos_token_id=self.tokenizer.eos_token_id,
early_stopping='never',
pad_token_id=self.tokenizer.pad_token_id,
length_penalty=0.0,
)
original_smiles_list = self.tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, len(inputs['input_ids'][0]):],
skip_special_tokens=True)
original_smiles_list = map(lambda x: x.replace(" ", ""), original_smiles_list)
# canonize the SMILES
canonized_smiles_list = []
temp = []
for original_smiles in original_smiles_list:
temp.append(original_smiles)
try:
canonized_smiles_list.append(Chem.MolToSmiles(Chem.MolFromSmiles(original_smiles)))
except:
canonized_smiles_list.append("")
#canonized_smiles_list = \
#['N#Cc1ccsc1Nc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1ccsc1Nc1cc(F)c([N+](=O)[O-])cc1F', 'N#Cc1ccsc1Nc1cc(Cl)c(F)cc1[N+](=O)[O-]', 'N#Cc1cnsc1Nc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1cc(F)c(F)cc1Nc1sccc1C#N', 'N#Cc1ccsc1Nc1cc(F)c(F)cc1[N+](=N)[O-]', 'N#Cc1cc(C#N)c(Nc2cc(F)c(F)cc2[N+](=O)[O-])s1', 'N#Cc1ccsc1Nc1c(F)c(F)cc(F)c1[N+](=O)[O-]', 'Nc1sccc1CNc1cc(F)c(F)cc1[N+](=O)[O-]', 'N#Cc1ccsc1Nc1ccc(F)cc1[N+](=O)[O-]']
predictions.append(canonized_smiles_list)
rank, invalid_rate = compute_rank(predictions)
return rank
def predict_single_smiles(self, smiles, task_type):
if task_type == "full_retro":
if "." in smiles:
return None
task_type = "retrosynthesis" if task_type == "full_retro" else "synthesis"
# canonicalize the smiles
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
smiles = Chem.MolToSmiles(mol)
smiles_list = [smiles]
task_type_list = [task_type]
df = pd.DataFrame({"src": smiles_list, "task_type": task_type_list})
test_dataset = Dataset.from_pandas(df)
# construct the dataloader
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
collate_fn=self.data_collator,
)
rank = self.predict(test_loader, task_type)
return rank