Spaces:
Runtime error
Runtime error
ChenyuRabbitLove
commited on
Commit
·
26f62c4
1
Parent(s):
e873140
fix/ format and modify __get_index_file sequence
Browse files- app.py +50 -62
- utils/chatbot.py +56 -48
- utils/docx_processor.py +15 -11
- utils/gpt_processor.py +308 -0
- utils/pdf_processor.py +21 -18
- utils/utils.py +7 -2
- utils/work_flow_controller.py +58 -29
app.py
CHANGED
@@ -1,35 +1,14 @@
|
|
1 |
-
import json
|
2 |
-
import time
|
3 |
-
import random
|
4 |
-
import os
|
5 |
-
|
6 |
-
import openai
|
7 |
import gradio as gr
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
from openai.embeddings_utils import distances_from_embeddings
|
11 |
|
12 |
-
from utils.gpt_processor import QuestionAnswerer
|
13 |
-
from utils.work_flow_controller import WorkFlowController
|
14 |
from utils.chatbot import Chatbot
|
15 |
from utils.utils import *
|
16 |
-
|
17 |
-
def create_chatbot():
|
18 |
-
bot = Chatbot()
|
19 |
-
return bot
|
20 |
|
|
|
21 |
with gr.Blocks() as demo:
|
22 |
-
history = gr.State([])
|
23 |
-
user_question = gr.State("")
|
24 |
-
chatbot_utils = Chatbot()
|
25 |
-
|
26 |
user_chatbot = gr.State(Chatbot())
|
27 |
-
|
28 |
-
upload_state = gr.State("wating")
|
29 |
-
finished = gr.State("finished")
|
30 |
|
31 |
with gr.Row():
|
32 |
-
gr.HTML(
|
33 |
with gr.Row(equal_height=True):
|
34 |
with gr.Column(scale=5):
|
35 |
with gr.Row():
|
@@ -48,48 +27,55 @@ with gr.Blocks() as demo:
|
|
48 |
with gr.Column(min_width=70, scale=1):
|
49 |
submit_btn = gr.Button("傳送")
|
50 |
|
51 |
-
bot_args = dict(
|
52 |
-
fn=bot,
|
53 |
-
inputs=user_chatbot,
|
54 |
-
outputs=chatbot,
|
55 |
-
)
|
56 |
-
|
57 |
-
user_args = dict(
|
58 |
-
fn=user,
|
59 |
-
inputs=[user_chatbot, user_input],
|
60 |
-
outputs=[user_input, chatbot],
|
61 |
-
queue=False,
|
62 |
-
)
|
63 |
-
|
64 |
-
response = user_input.submit(**user_args).then(**bot_args)
|
65 |
-
|
66 |
-
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
67 |
-
|
68 |
-
submit_btn.click(user,
|
69 |
-
[user_input, chatbot],
|
70 |
-
[user_input, chatbot],
|
71 |
-
chatbot,
|
72 |
-
queue=False).then(**bot_args).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
with gr.Row():
|
77 |
-
index_file = gr.File(
|
78 |
-
|
|
|
|
|
79 |
with gr.Row():
|
80 |
-
instruction = gr.Markdown(
|
|
|
81 |
## 使用說明
|
82 |
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
|
83 |
2. 在上方輸入欄輸入問題,系統將自動回覆
|
84 |
3. 可以根據下方的摘要內容來提問
|
85 |
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
|
86 |
-
5.
|
87 |
-
"""
|
|
|
88 |
|
89 |
with gr.Row():
|
90 |
-
describe = gr.Markdown(
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
clear_state_args = dict(
|
94 |
fn=clear_state,
|
95 |
inputs=user_chatbot,
|
@@ -98,6 +84,7 @@ with gr.Blocks() as demo:
|
|
98 |
|
99 |
clear_btn.click(**clear_state_args)
|
100 |
|
|
|
101 |
send_system_nofification_args = dict(
|
102 |
fn=send_system_nofification,
|
103 |
inputs=user_chatbot,
|
@@ -116,12 +103,13 @@ with gr.Blocks() as demo:
|
|
116 |
outputs=[describe],
|
117 |
)
|
118 |
|
119 |
-
index_file.upload(**send_system_nofification_args)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
if __name__ == "__main__":
|
127 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
from utils.chatbot import Chatbot
|
4 |
from utils.utils import *
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# start of gradio interface
|
7 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
8 |
user_chatbot = gr.State(Chatbot())
|
|
|
|
|
|
|
9 |
|
10 |
with gr.Row():
|
11 |
+
gr.HTML("Junyi Academy Chatbot")
|
12 |
with gr.Row(equal_height=True):
|
13 |
with gr.Column(scale=5):
|
14 |
with gr.Row():
|
|
|
27 |
with gr.Column(min_width=70, scale=1):
|
28 |
submit_btn = gr.Button("傳送")
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
with gr.Row():
|
31 |
+
index_file = gr.File(
|
32 |
+
file_count="multiple", file_types=["pdf"], label="Upload PDF file"
|
33 |
+
)
|
34 |
+
|
35 |
with gr.Row():
|
36 |
+
instruction = gr.Markdown(
|
37 |
+
"""
|
38 |
## 使用說明
|
39 |
1. 上傳一個或多個 PDF 檔案,系統將自動進行摘要、翻譯等處理後建立知識庫
|
40 |
2. 在上方輸入欄輸入問題,系統將自動回覆
|
41 |
3. 可以根據下方的摘要內容來提問
|
42 |
4. 每次對話會根據第一個問題的內容來檢索所有文件,並挑選最能回答問題的文件來回覆
|
43 |
+
5. 要切換檢索的文件,請點選「清除」按鈕後再重新提問
|
44 |
+
"""
|
45 |
+
)
|
46 |
|
47 |
with gr.Row():
|
48 |
+
describe = gr.Markdown("", visible=True)
|
49 |
+
|
50 |
+
# end of gradio interface
|
51 |
|
52 |
+
# start of workflow controller
|
53 |
+
|
54 |
+
# defining workflow of user bot interaction
|
55 |
+
bot_args = dict(
|
56 |
+
fn=bot,
|
57 |
+
inputs=user_chatbot,
|
58 |
+
outputs=chatbot,
|
59 |
+
)
|
60 |
+
|
61 |
+
user_args = dict(
|
62 |
+
fn=user,
|
63 |
+
inputs=[user_chatbot, user_input],
|
64 |
+
outputs=[user_input, chatbot],
|
65 |
+
queue=False,
|
66 |
+
)
|
67 |
+
|
68 |
+
response = user_input.submit(**user_args).then(**bot_args)
|
69 |
+
|
70 |
+
response.then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
71 |
+
|
72 |
+
submit_btn.click(
|
73 |
+
**user_args,
|
74 |
+
).then(
|
75 |
+
**bot_args
|
76 |
+
).then(lambda: gr.update(interactive=True), None, [user_input], queue=False)
|
77 |
+
|
78 |
+
# defining workflow of clear state
|
79 |
clear_state_args = dict(
|
80 |
fn=clear_state,
|
81 |
inputs=user_chatbot,
|
|
|
84 |
|
85 |
clear_btn.click(**clear_state_args)
|
86 |
|
87 |
+
# defining workflow of building knowledge base
|
88 |
send_system_nofification_args = dict(
|
89 |
fn=send_system_nofification,
|
90 |
inputs=user_chatbot,
|
|
|
103 |
outputs=[describe],
|
104 |
)
|
105 |
|
106 |
+
index_file.upload(**send_system_nofification_args).then(
|
107 |
+
lambda: gr.update(interactive=True), None, None, queue=False
|
108 |
+
).then(**bulid_knowledge_base_args).then(**send_system_nofification_args).then(
|
109 |
+
lambda: gr.update(interactive=True), None, None, queue=False
|
110 |
+
).then(
|
111 |
+
**change_md_args
|
112 |
+
)
|
113 |
+
|
114 |
if __name__ == "__main__":
|
115 |
demo.launch()
|
utils/chatbot.py
CHANGED
@@ -9,57 +9,59 @@ from openai.embeddings_utils import distances_from_embeddings
|
|
9 |
from .work_flow_controller import WorkFlowController
|
10 |
from .gpt_processor import QuestionAnswerer
|
11 |
|
12 |
-
|
|
|
13 |
def __init__(self) -> None:
|
14 |
self.history = []
|
15 |
-
self.upload_state =
|
16 |
-
|
17 |
self.knowledge_base = None
|
18 |
self.context = None
|
19 |
self.context_page_num = None
|
20 |
self.context_file_name = None
|
21 |
-
|
22 |
|
23 |
def build_knowledge_base(self, files):
|
24 |
work_flow_controller = WorkFlowController(files)
|
25 |
self.csv_result_path = work_flow_controller.csv_result_path
|
26 |
self.json_result_path = work_flow_controller.json_result_path
|
27 |
|
28 |
-
with open(self.csv_result_path,
|
29 |
knowledge_base = pd.read_csv(fp)
|
30 |
-
knowledge_base[
|
|
|
|
|
31 |
|
32 |
self.knowledge_base = knowledge_base
|
33 |
-
self.upload_state =
|
34 |
|
35 |
def clear_state(self):
|
36 |
self.context = None
|
37 |
self.context_page_num = None
|
38 |
self.context_file_name = None
|
39 |
-
self.upload_state =
|
40 |
self.history = []
|
41 |
|
42 |
def send_system_nofification(self):
|
43 |
-
if self.upload_state ==
|
44 |
-
conversation = [[
|
45 |
return conversation
|
46 |
-
elif self.upload_state ==
|
47 |
-
conversation = [[
|
48 |
return conversation
|
49 |
-
|
50 |
def change_md(self):
|
51 |
content = self.__construct_summary()
|
52 |
return gr.Markdown.update(content, visible=True)
|
53 |
-
|
54 |
def __construct_summary(self):
|
55 |
-
with open(self.json_result_path,
|
56 |
knowledge_base = json.load(fp)
|
57 |
|
58 |
context = """"""
|
59 |
for key in knowledge_base.keys():
|
60 |
-
file_name = knowledge_base[key][
|
61 |
-
total_page = knowledge_base[key][
|
62 |
-
summary = knowledge_base[key][
|
63 |
file_context = f"""
|
64 |
### 文件摘要
|
65 |
{file_name} (共 {total_page} 頁)<br><br>
|
@@ -67,14 +69,14 @@ class Chatbot():
|
|
67 |
"""
|
68 |
context += file_context
|
69 |
return context
|
70 |
-
|
71 |
def user(self, message):
|
72 |
self.history += [[message, None]]
|
73 |
return "", self.history
|
74 |
-
|
75 |
def bot(self):
|
76 |
user_message = self.history[-1][0]
|
77 |
-
print(f
|
78 |
|
79 |
if self.knowledge_base is None:
|
80 |
response = [
|
@@ -82,41 +84,47 @@ class Chatbot():
|
|
82 |
]
|
83 |
self.history = response
|
84 |
return self.history
|
85 |
-
|
|
|
86 |
self.__get_index_file(user_message)
|
87 |
-
print(f'CONTEXT: {self.context}')
|
88 |
if self.context is None:
|
89 |
response = [
|
90 |
[user_message, "無法找到相關文件,請重新提問"],
|
91 |
]
|
92 |
self.history = response
|
93 |
return self.history
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
self.history[-1] = response[0]
|
110 |
-
return self.history
|
111 |
-
|
112 |
def __get_index_file(self, user_message):
|
113 |
-
user_message_embedding = openai.Embedding.create(
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
if self.knowledge_base[
|
118 |
self.context = None
|
119 |
else:
|
120 |
-
self.context = self.knowledge_base[
|
121 |
-
self.context_page_num = self.knowledge_base[
|
122 |
-
self.context_file_name = self.knowledge_base[
|
|
|
9 |
from .work_flow_controller import WorkFlowController
|
10 |
from .gpt_processor import QuestionAnswerer
|
11 |
|
12 |
+
|
13 |
+
class Chatbot:
|
14 |
def __init__(self) -> None:
|
15 |
self.history = []
|
16 |
+
self.upload_state = "waiting"
|
17 |
+
|
18 |
self.knowledge_base = None
|
19 |
self.context = None
|
20 |
self.context_page_num = None
|
21 |
self.context_file_name = None
|
|
|
22 |
|
23 |
def build_knowledge_base(self, files):
|
24 |
work_flow_controller = WorkFlowController(files)
|
25 |
self.csv_result_path = work_flow_controller.csv_result_path
|
26 |
self.json_result_path = work_flow_controller.json_result_path
|
27 |
|
28 |
+
with open(self.csv_result_path, "r", encoding="UTF-8") as fp:
|
29 |
knowledge_base = pd.read_csv(fp)
|
30 |
+
knowledge_base["page_embedding"] = (
|
31 |
+
knowledge_base["page_embedding"].apply(eval).apply(np.array)
|
32 |
+
)
|
33 |
|
34 |
self.knowledge_base = knowledge_base
|
35 |
+
self.upload_state = "done"
|
36 |
|
37 |
def clear_state(self):
|
38 |
self.context = None
|
39 |
self.context_page_num = None
|
40 |
self.context_file_name = None
|
41 |
+
self.upload_state = "waiting"
|
42 |
self.history = []
|
43 |
|
44 |
def send_system_nofification(self):
|
45 |
+
if self.upload_state == "waiting":
|
46 |
+
conversation = [["已上傳文件", "文件處理中(摘要、翻譯等),結束後將自動回覆"]]
|
47 |
return conversation
|
48 |
+
elif self.upload_state == "done":
|
49 |
+
conversation = [["已上傳文件", "文件處理完成,請開始提問"]]
|
50 |
return conversation
|
51 |
+
|
52 |
def change_md(self):
|
53 |
content = self.__construct_summary()
|
54 |
return gr.Markdown.update(content, visible=True)
|
55 |
+
|
56 |
def __construct_summary(self):
|
57 |
+
with open(self.json_result_path, "r", encoding="UTF-8") as fp:
|
58 |
knowledge_base = json.load(fp)
|
59 |
|
60 |
context = """"""
|
61 |
for key in knowledge_base.keys():
|
62 |
+
file_name = knowledge_base[key]["file_name"]
|
63 |
+
total_page = knowledge_base[key]["total_pages"]
|
64 |
+
summary = knowledge_base[key]["summarized_content"]
|
65 |
file_context = f"""
|
66 |
### 文件摘要
|
67 |
{file_name} (共 {total_page} 頁)<br><br>
|
|
|
69 |
"""
|
70 |
context += file_context
|
71 |
return context
|
72 |
+
|
73 |
def user(self, message):
|
74 |
self.history += [[message, None]]
|
75 |
return "", self.history
|
76 |
+
|
77 |
def bot(self):
|
78 |
user_message = self.history[-1][0]
|
79 |
+
print(f"user_message: {user_message}")
|
80 |
|
81 |
if self.knowledge_base is None:
|
82 |
response = [
|
|
|
84 |
]
|
85 |
self.history = response
|
86 |
return self.history
|
87 |
+
|
88 |
+
else:
|
89 |
self.__get_index_file(user_message)
|
|
|
90 |
if self.context is None:
|
91 |
response = [
|
92 |
[user_message, "無法找到相關文件,請重新提問"],
|
93 |
]
|
94 |
self.history = response
|
95 |
return self.history
|
96 |
+
else:
|
97 |
+
qa_processor = QuestionAnswerer()
|
98 |
+
bot_message = qa_processor.answer_question(
|
99 |
+
self.context,
|
100 |
+
self.context_page_num,
|
101 |
+
self.context_file_name,
|
102 |
+
self.history,
|
103 |
+
)
|
104 |
+
print(f"bot_message: {bot_message}")
|
105 |
+
response = [
|
106 |
+
[user_message, bot_message],
|
107 |
+
]
|
108 |
+
self.history[-1] = response[0]
|
109 |
+
return self.history
|
110 |
+
|
|
|
|
|
|
|
111 |
def __get_index_file(self, user_message):
|
112 |
+
user_message_embedding = openai.Embedding.create(
|
113 |
+
input=user_message, engine="text-embedding-ada-002"
|
114 |
+
)["data"][0]["embedding"]
|
115 |
+
|
116 |
+
self.knowledge_base["distance"] = distances_from_embeddings(
|
117 |
+
user_message_embedding,
|
118 |
+
self.knowledge_base["page_embedding"].values,
|
119 |
+
distance_metric="cosine",
|
120 |
+
)
|
121 |
+
self.knowledge_base = self.knowledge_base.sort_values(
|
122 |
+
by="distance", ascending=True
|
123 |
+
)
|
124 |
|
125 |
+
if self.knowledge_base["distance"].values[0] > 0.2:
|
126 |
self.context = None
|
127 |
else:
|
128 |
+
self.context = self.knowledge_base["page_content"].values[0]
|
129 |
+
self.context_page_num = self.knowledge_base["page_num"].values[0]
|
130 |
+
self.context_file_name = self.knowledge_base["file_name"].values[0]
|
utils/docx_processor.py
CHANGED
@@ -6,13 +6,14 @@ import docx2txt
|
|
6 |
|
7 |
from gpt_processor import Translator
|
8 |
|
|
|
9 |
class DOCXProcessor:
|
10 |
def __init__(self, file_path: str) -> None:
|
11 |
self.file_path = file_path
|
12 |
self.file_info = {
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
}
|
17 |
self.__build_info()
|
18 |
|
@@ -20,21 +21,24 @@ class DOCXProcessor:
|
|
20 |
try:
|
21 |
text = docx2txt.process(self.file_path)
|
22 |
text = unicodedata.normalize("NFKD", text)
|
23 |
-
text = text.replace(
|
24 |
-
text = re.sub(
|
25 |
-
self.file_info[
|
26 |
|
27 |
tranlator = Translator()
|
28 |
-
self.file_info[
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
except FileNotFoundError:
|
32 |
print(f"File not found: {self.file_path}")
|
33 |
except Exception as e:
|
34 |
print(f"An error occurred: {str(e)}")
|
35 |
-
|
36 |
def __is_chinese(self, text: str) -> bool:
|
37 |
for char in text:
|
38 |
-
if char >=
|
39 |
return True
|
40 |
-
return False
|
|
|
6 |
|
7 |
from gpt_processor import Translator
|
8 |
|
9 |
+
|
10 |
class DOCXProcessor:
|
11 |
def __init__(self, file_path: str) -> None:
|
12 |
self.file_path = file_path
|
13 |
self.file_info = {
|
14 |
+
"file_name": self.file_path.split("/")[-1],
|
15 |
+
"file_format": "DOCX",
|
16 |
+
"file_full_content": "",
|
17 |
}
|
18 |
self.__build_info()
|
19 |
|
|
|
21 |
try:
|
22 |
text = docx2txt.process(self.file_path)
|
23 |
text = unicodedata.normalize("NFKD", text)
|
24 |
+
text = text.replace("\n", " ").replace("\r", "")
|
25 |
+
text = re.sub(" +", " ", text)
|
26 |
+
self.file_info["is_chinese"] = self.__is_chinese(text)
|
27 |
|
28 |
tranlator = Translator()
|
29 |
+
self.file_info["file_full_content"] = (
|
30 |
+
tranlator.translate_to_chinese(text)
|
31 |
+
if not self.file_info["is_chinese"]
|
32 |
+
else text
|
33 |
+
)
|
34 |
|
|
|
35 |
except FileNotFoundError:
|
36 |
print(f"File not found: {self.file_path}")
|
37 |
except Exception as e:
|
38 |
print(f"An error occurred: {str(e)}")
|
39 |
+
|
40 |
def __is_chinese(self, text: str) -> bool:
|
41 |
for char in text:
|
42 |
+
if char >= "\u4e00" and char <= "\u9fff":
|
43 |
return True
|
44 |
+
return False
|
utils/gpt_processor.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
from opencc import OpenCC
|
7 |
+
|
8 |
+
import openai
|
9 |
+
import tiktoken
|
10 |
+
|
11 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
12 |
+
|
13 |
+
|
14 |
+
class GPTAgent:
|
15 |
+
def __init__(self, model):
|
16 |
+
openai.api_key = OPENAI_API_KEY
|
17 |
+
self.model = model
|
18 |
+
self.temperature = 0.8
|
19 |
+
self.frequency_penalty = 0
|
20 |
+
self.presence_penalty = 0.6
|
21 |
+
self.max_tokens = 2048
|
22 |
+
self.split_max_tokens = 13000
|
23 |
+
|
24 |
+
def request(self, messages):
|
25 |
+
response = self.agent.complete(messages=messages)
|
26 |
+
return response.choices[0].message["content"]
|
27 |
+
|
28 |
+
def split_into_many(self, text) -> List[str]:
|
29 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
30 |
+
# Split the text into sentences
|
31 |
+
sentences = text.split("。")
|
32 |
+
|
33 |
+
# Get the number of tokens for each sentence
|
34 |
+
n_tokens = [len(tokenizer.encode(" " + sentence)) for sentence in sentences]
|
35 |
+
|
36 |
+
chunks = []
|
37 |
+
tokens_so_far = 0
|
38 |
+
chunk = []
|
39 |
+
|
40 |
+
# Loop through the sentences and tokens joined together in a tuple
|
41 |
+
for sentence, token in zip(sentences, n_tokens):
|
42 |
+
# If the number of tokens so far plus the number of tokens in the current sentence is greater
|
43 |
+
# than the max number of tokens, then add the chunk to the list of chunks and reset
|
44 |
+
# the chunk and tokens so far
|
45 |
+
if tokens_so_far + token > self.split_max_tokens:
|
46 |
+
chunks.append("。".join(chunk) + "。")
|
47 |
+
chunk = []
|
48 |
+
tokens_so_far = 0
|
49 |
+
|
50 |
+
# If the number of tokens in the current sentence is greater than the max number of
|
51 |
+
# tokens, go to the next sentence
|
52 |
+
if token > self.split_max_tokens:
|
53 |
+
continue
|
54 |
+
|
55 |
+
# Otherwise, add the sentence to the chunk and add the number of tokens to the total
|
56 |
+
chunk.append(sentence)
|
57 |
+
tokens_so_far += token + 1
|
58 |
+
|
59 |
+
# if the length of the text is less than the max number of tokens, then return the text
|
60 |
+
return [text] if len(chunks) == 0 else chunks
|
61 |
+
|
62 |
+
def preprocess(self, text):
|
63 |
+
text = text.replace("\n", " ").replace("\r", "")
|
64 |
+
return text
|
65 |
+
|
66 |
+
def parse_result(self, result):
|
67 |
+
parsed_result = []
|
68 |
+
chinese_converter = OpenCC("s2tw")
|
69 |
+
for i in range(len(result)):
|
70 |
+
result[i] = result[i].split(",")
|
71 |
+
if len(result[i]) == 1:
|
72 |
+
result[i] = result[i][0].split("、")
|
73 |
+
if len(result[i]) == 1:
|
74 |
+
result[i] = result[i][0].split(",")
|
75 |
+
for word in result[i]:
|
76 |
+
try:
|
77 |
+
parsed_result.append(
|
78 |
+
chinese_converter.convert(word).strip().replace("。", "")
|
79 |
+
)
|
80 |
+
except Exception as e:
|
81 |
+
logging.error(e)
|
82 |
+
logging.error("Failed to parse result")
|
83 |
+
return parsed_result
|
84 |
+
|
85 |
+
|
86 |
+
class Translator(GPTAgent):
|
87 |
+
def __init__(self):
|
88 |
+
super().__init__("gpt-3.5-turbo")
|
89 |
+
|
90 |
+
def translate_to_chinese(self, text):
|
91 |
+
system_prompt = """
|
92 |
+
I want you to act as an Chinese translator, spelling corrector and improver.
|
93 |
+
I will speak to you in English, translate it and answer in the corrected and improved version of my text, in Traditional Chinese.
|
94 |
+
Keep the meaning same, but make them more literary. I want you to only reply the correction, the improvements and nothing else, do not write explanations and DO NOT use any Simplified Chinese.
|
95 |
+
"""
|
96 |
+
system_prompt_zh_tw = """
|
97 |
+
我希望你擔任中文翻譯、拼寫糾正及改進的角色。
|
98 |
+
我將用英文與你交流,請將其翻譯並用繁體中文回答,同時對我的文本進行糾正和改進。
|
99 |
+
保持原意不變,但使其更具文學性。我希望你僅回覆更正、改進的部分,不要寫解釋,也不要使用任何简体中文。
|
100 |
+
"""
|
101 |
+
messages = [
|
102 |
+
{"role": "system", "content": f"{system_prompt_zh_tw}"},
|
103 |
+
{"role": "user", "content": text},
|
104 |
+
]
|
105 |
+
try:
|
106 |
+
response = openai.ChatCompletion.create(
|
107 |
+
model=self.model,
|
108 |
+
messages=messages,
|
109 |
+
temperature=self.temperature,
|
110 |
+
frequency_penalty=self.frequency_penalty,
|
111 |
+
presence_penalty=self.presence_penalty,
|
112 |
+
)
|
113 |
+
except Exception as e:
|
114 |
+
logging.error(e)
|
115 |
+
logging.error("Failed to translate to Chinese")
|
116 |
+
|
117 |
+
# translate from simplified chinese to traditional chinese
|
118 |
+
chinese_converter = OpenCC("s2tw")
|
119 |
+
return chinese_converter.convert(
|
120 |
+
response["choices"][0]["message"]["content"].strip()
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
class EmbeddingGenerator(GPTAgent):
|
125 |
+
def __init__(self):
|
126 |
+
super().__init__("text-davinci-002")
|
127 |
+
|
128 |
+
def get_embedding(self, text):
|
129 |
+
return openai.Embedding.create(input=text, engine="text-embedding-ada-002")[
|
130 |
+
"data"
|
131 |
+
][0]["embedding"]
|
132 |
+
|
133 |
+
|
134 |
+
class KeywordsGenerator(GPTAgent):
|
135 |
+
def __init__(self):
|
136 |
+
super().__init__("gpt-3.5-turbo")
|
137 |
+
|
138 |
+
def extract_keywords(self, text):
|
139 |
+
system_prompt = """
|
140 |
+
請你為以下內容抓出 5 個關鍵字用以搜尋這篇文章,並用「,」來分隔
|
141 |
+
"""
|
142 |
+
text_chunks = self.split_into_many(text)
|
143 |
+
keywords = []
|
144 |
+
for i in range(len(text_chunks)):
|
145 |
+
text = text_chunks[i]
|
146 |
+
messages = [
|
147 |
+
{"role": "system", "content": f"{system_prompt}"},
|
148 |
+
{"role": "user", "content": f"{self.preprocess(text)}"},
|
149 |
+
]
|
150 |
+
try:
|
151 |
+
response = openai.ChatCompletion.create(
|
152 |
+
model=self.model,
|
153 |
+
messages=messages,
|
154 |
+
temperature=0,
|
155 |
+
max_tokens=self.max_tokens,
|
156 |
+
frequency_penalty=self.frequency_penalty,
|
157 |
+
presence_penalty=self.presence_penalty,
|
158 |
+
)
|
159 |
+
keywords.append(response["choices"][0]["message"]["content"].strip())
|
160 |
+
except Exception as e:
|
161 |
+
logging.error(e)
|
162 |
+
logging.error("Failed to extract keywords")
|
163 |
+
return self.parse_result(keywords)
|
164 |
+
|
165 |
+
|
166 |
+
class TopicsGenerator(GPTAgent):
|
167 |
+
def __init__(self):
|
168 |
+
super().__init__("gpt-3.5-turbo")
|
169 |
+
|
170 |
+
def extract_topics(self, text):
|
171 |
+
system_prompt = """
|
172 |
+
請你為以下內容給予 3 個高度抽象的主題分類這篇文章,並用「,」來分隔
|
173 |
+
"""
|
174 |
+
text_chunks = self.split_into_many(text)
|
175 |
+
topics = []
|
176 |
+
for i in range(len(text_chunks)):
|
177 |
+
text = text_chunks[i]
|
178 |
+
messages = [
|
179 |
+
{"role": "system", "content": f"{system_prompt}"},
|
180 |
+
{"role": "user", "content": f"{self.preprocess(text)}"},
|
181 |
+
]
|
182 |
+
try:
|
183 |
+
response = openai.ChatCompletion.create(
|
184 |
+
model=self.model,
|
185 |
+
messages=messages,
|
186 |
+
temperature=0,
|
187 |
+
max_tokens=self.max_tokens,
|
188 |
+
frequency_penalty=self.frequency_penalty,
|
189 |
+
presence_penalty=self.presence_penalty,
|
190 |
+
)
|
191 |
+
topics.append(response["choices"][0]["message"]["content"].strip())
|
192 |
+
except Exception as e:
|
193 |
+
logging.error(e)
|
194 |
+
logging.error("Failed to extract topics")
|
195 |
+
return self.parse_result(topics)
|
196 |
+
|
197 |
+
|
198 |
+
class Summarizer(GPTAgent):
|
199 |
+
def __init__(self):
|
200 |
+
super().__init__("gpt-3.5-turbo-16k")
|
201 |
+
|
202 |
+
def summarize(self, text):
|
203 |
+
system_prompt = """
|
204 |
+
請幫我總結以下的文章。
|
205 |
+
"""
|
206 |
+
messages = [
|
207 |
+
{"role": "system", "content": f"{system_prompt}"},
|
208 |
+
{"role": "user", "content": text},
|
209 |
+
]
|
210 |
+
try:
|
211 |
+
response = openai.ChatCompletion.create(
|
212 |
+
model=self.model,
|
213 |
+
messages=messages,
|
214 |
+
temperature=self.temperature,
|
215 |
+
max_tokens=self.max_tokens,
|
216 |
+
frequency_penalty=self.frequency_penalty,
|
217 |
+
presence_penalty=self.presence_penalty,
|
218 |
+
)
|
219 |
+
except Exception as e:
|
220 |
+
logging.error(e)
|
221 |
+
logging.error("Failed to summarize")
|
222 |
+
chinese_converter = OpenCC("s2tw")
|
223 |
+
print(f'the summary is {response["choices"][0]["message"]["content"].strip()}')
|
224 |
+
response = chinese_converter.convert(
|
225 |
+
response["choices"][0]["message"]["content"]
|
226 |
+
)
|
227 |
+
|
228 |
+
return re.sub(r"\n+", "<br>", response)
|
229 |
+
|
230 |
+
|
231 |
+
class QuestionAnswerer(GPTAgent):
|
232 |
+
def __init__(self):
|
233 |
+
super().__init__("gpt-3.5-turbo-16k")
|
234 |
+
|
235 |
+
def answer_chunk_question(self, text, question):
|
236 |
+
system_prompt = """
|
237 |
+
你是一個知識檢索系統,我會給你一份文件,請幫我依照文件內容回答問題,並用繁體中文回答。以下是文件內容
|
238 |
+
"""
|
239 |
+
text_chunks = self.split_into_many(text)
|
240 |
+
answer_chunks = []
|
241 |
+
for i in range(len(text_chunks)):
|
242 |
+
text = text_chunks[i]
|
243 |
+
messages = [
|
244 |
+
{"role": "system", "content": f"{system_prompt} + '\n' '{text}'"},
|
245 |
+
{"role": "user", "content": f"{question}"},
|
246 |
+
]
|
247 |
+
try:
|
248 |
+
response = openai.ChatCompletion.create(
|
249 |
+
model=self.model,
|
250 |
+
messages=messages,
|
251 |
+
temperature=self.temperature,
|
252 |
+
max_tokens=1024,
|
253 |
+
frequency_penalty=self.frequency_penalty,
|
254 |
+
presence_penalty=self.presence_penalty,
|
255 |
+
)
|
256 |
+
except Exception as e:
|
257 |
+
logging.error(e)
|
258 |
+
logging.error("Failed to answer question")
|
259 |
+
chinese_converter = OpenCC("s2tw")
|
260 |
+
answer_chunks.append(
|
261 |
+
chinese_converter.convert(
|
262 |
+
response["choices"][0]["message"]["content"].strip()
|
263 |
+
)
|
264 |
+
)
|
265 |
+
|
266 |
+
return "。".join(answer_chunks)
|
267 |
+
|
268 |
+
def answer_question(self, context, context_page_num, context_file_name, history):
|
269 |
+
system_prompt = """
|
270 |
+
你是一個知識檢索系統,我會給你一份文件,請幫我依照文件內容回答問題,並用繁體中文回答。以下是文件內容
|
271 |
+
"""
|
272 |
+
|
273 |
+
history = self.__construct_message_history(history)
|
274 |
+
messages = [
|
275 |
+
{"role": "system", "content": f"{system_prompt} + '\n' '''{context}'''"},
|
276 |
+
] + history
|
277 |
+
try:
|
278 |
+
response = openai.ChatCompletion.create(
|
279 |
+
model=self.model,
|
280 |
+
messages=messages,
|
281 |
+
temperature=self.temperature,
|
282 |
+
max_tokens=2048,
|
283 |
+
frequency_penalty=self.frequency_penalty,
|
284 |
+
presence_penalty=self.presence_penalty,
|
285 |
+
)
|
286 |
+
chinese_converter = OpenCC("s2tw")
|
287 |
+
page_num_message = f"以下內容來自 {context_file_name},第 {context_page_num} 頁\n\n"
|
288 |
+
bot_answer = response["choices"][0]["message"]["content"]
|
289 |
+
whole_answer = page_num_message + bot_answer
|
290 |
+
|
291 |
+
return chinese_converter.convert(whole_answer)
|
292 |
+
except Exception as e:
|
293 |
+
logging.error(e)
|
294 |
+
logging.error("Failed to answer question")
|
295 |
+
|
296 |
+
def __construct_message_history(self, history):
|
297 |
+
print(f"history is {history}")
|
298 |
+
max_history_length = 10
|
299 |
+
if len(history) > max_history_length:
|
300 |
+
history = history[-max_history_length:]
|
301 |
+
|
302 |
+
messages = []
|
303 |
+
for i in range(len(history)):
|
304 |
+
messages.append({"role": "user", "content": history[i][0]})
|
305 |
+
if history[i][1] is not None:
|
306 |
+
messages.append({"role": "assistant", "content": history[i][1]})
|
307 |
+
|
308 |
+
return messages
|
utils/pdf_processor.py
CHANGED
@@ -5,45 +5,48 @@ import logging
|
|
5 |
|
6 |
from .gpt_processor import Translator
|
7 |
|
|
|
8 |
class PDFProcessor:
|
9 |
def __init__(self, file_path: str) -> None:
|
10 |
self.file_path = file_path
|
11 |
self.file_info = {
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
}
|
19 |
self.__build_info()
|
20 |
|
21 |
def __build_info(self) -> None:
|
22 |
try:
|
23 |
-
with open(self.file_path,
|
24 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
25 |
pages = len(pdf_reader.pages)
|
26 |
-
self.file_info[
|
27 |
for i, page in enumerate(pdf_reader.pages):
|
28 |
text = page.extract_text()
|
29 |
text = unicodedata.normalize("NFKD", text)
|
30 |
-
text = text.replace(
|
31 |
-
text = re.sub(
|
32 |
-
self.file_info[
|
33 |
|
34 |
page_info = {}
|
35 |
logging.info(f"Processing page {i + 1}...")
|
36 |
-
page_info[
|
37 |
-
page_info[
|
38 |
-
self.file_info[
|
39 |
-
self.file_info[
|
|
|
|
|
40 |
except FileNotFoundError:
|
41 |
print(f"File not found: {self.file_path}")
|
42 |
except Exception as e:
|
43 |
print(f"An error occurred: {str(e)}")
|
44 |
-
|
45 |
def __is_chinese(self, text: str) -> bool:
|
46 |
for char in text:
|
47 |
-
if char >=
|
48 |
return True
|
49 |
-
return False
|
|
|
5 |
|
6 |
from .gpt_processor import Translator
|
7 |
|
8 |
+
|
9 |
class PDFProcessor:
|
10 |
def __init__(self, file_path: str) -> None:
|
11 |
self.file_path = file_path
|
12 |
self.file_info = {
|
13 |
+
"file_name": self.file_path.split("/")[-1],
|
14 |
+
"file_format": "PDF",
|
15 |
+
"total_pages": 0,
|
16 |
+
"file_content": {},
|
17 |
+
"file_full_content": "",
|
18 |
+
"is_chinese": "",
|
19 |
}
|
20 |
self.__build_info()
|
21 |
|
22 |
def __build_info(self) -> None:
|
23 |
try:
|
24 |
+
with open(self.file_path, "rb") as pdf_file:
|
25 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
26 |
pages = len(pdf_reader.pages)
|
27 |
+
self.file_info["total_pages"] = pages
|
28 |
for i, page in enumerate(pdf_reader.pages):
|
29 |
text = page.extract_text()
|
30 |
text = unicodedata.normalize("NFKD", text)
|
31 |
+
text = text.replace("\n", " ").replace("\r", "")
|
32 |
+
text = re.sub(" +", " ", text)
|
33 |
+
self.file_info["is_chinese"] = self.__is_chinese(text)
|
34 |
|
35 |
page_info = {}
|
36 |
logging.info(f"Processing page {i + 1}...")
|
37 |
+
page_info["page_num"] = i + 1
|
38 |
+
page_info["page_content"] = text
|
39 |
+
self.file_info["file_content"][i + 1] = page_info
|
40 |
+
self.file_info["file_full_content"] = (
|
41 |
+
self.file_info["file_full_content"] + page_info["page_content"]
|
42 |
+
)
|
43 |
except FileNotFoundError:
|
44 |
print(f"File not found: {self.file_path}")
|
45 |
except Exception as e:
|
46 |
print(f"An error occurred: {str(e)}")
|
47 |
+
|
48 |
def __is_chinese(self, text: str) -> bool:
|
49 |
for char in text:
|
50 |
+
if char >= "\u4e00" and char <= "\u9fff":
|
51 |
return True
|
52 |
+
return False
|
utils/utils.py
CHANGED
@@ -1,21 +1,26 @@
|
|
1 |
-
|
2 |
def clear_state(chatbot, *args):
|
3 |
return chatbot.clear_state(*args)
|
4 |
|
|
|
5 |
def send_system_nofification(chatbot, *args):
|
6 |
return chatbot.send_system_nofification(*args)
|
7 |
|
|
|
8 |
def build_knowledge_base(chatbot, *args):
|
9 |
return chatbot.build_knowledge_base(*args)
|
10 |
|
|
|
11 |
def change_md(chatbot, *args):
|
12 |
return chatbot.change_md(*args)
|
13 |
|
|
|
14 |
def get_index_file(chatbot, *args):
|
15 |
return chatbot.get_index_file(*args)
|
16 |
|
|
|
17 |
def user(chatbot, *args):
|
18 |
return chatbot.user(*args)
|
19 |
|
|
|
20 |
def bot(chatbot, *args):
|
21 |
-
return chatbot.bot(*args)
|
|
|
|
|
1 |
def clear_state(chatbot, *args):
|
2 |
return chatbot.clear_state(*args)
|
3 |
|
4 |
+
|
5 |
def send_system_nofification(chatbot, *args):
|
6 |
return chatbot.send_system_nofification(*args)
|
7 |
|
8 |
+
|
9 |
def build_knowledge_base(chatbot, *args):
|
10 |
return chatbot.build_knowledge_base(*args)
|
11 |
|
12 |
+
|
13 |
def change_md(chatbot, *args):
|
14 |
return chatbot.change_md(*args)
|
15 |
|
16 |
+
|
17 |
def get_index_file(chatbot, *args):
|
18 |
return chatbot.get_index_file(*args)
|
19 |
|
20 |
+
|
21 |
def user(chatbot, *args):
|
22 |
return chatbot.user(*args)
|
23 |
|
24 |
+
|
25 |
def bot(chatbot, *args):
|
26 |
+
return chatbot.bot(*args)
|
utils/work_flow_controller.py
CHANGED
@@ -5,15 +5,21 @@ import hashlib
|
|
5 |
|
6 |
import pandas as pd
|
7 |
|
8 |
-
from .gpt_processor import (
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
from .pdf_processor import PDFProcessor
|
11 |
|
12 |
processors = {
|
13 |
-
|
14 |
}
|
15 |
|
16 |
-
|
|
|
17 |
def __init__(self, file_src) -> None:
|
18 |
# check if the file_path is list
|
19 |
# self.file_paths = self.__get_file_name(file_src)
|
@@ -24,8 +30,8 @@ class WorkFlowController():
|
|
24 |
self.files_info = {}
|
25 |
|
26 |
for file_path in self.file_paths:
|
27 |
-
file_name = file_path.split(
|
28 |
-
file_format = file_path.split(
|
29 |
self.file_processor = processors[file_format]
|
30 |
file = self.file_processor(file_path).file_info
|
31 |
file = self.__process_file(file)
|
@@ -34,24 +40,25 @@ class WorkFlowController():
|
|
34 |
self.__dump_to_json()
|
35 |
self.__dump_to_csv()
|
36 |
|
37 |
-
|
38 |
def __get_summary(self, file: dict):
|
39 |
# get summary from file content
|
40 |
-
|
41 |
summarizer = Summarizer()
|
42 |
-
file[
|
43 |
return file
|
44 |
|
45 |
def __get_keywords(self, file: dict):
|
46 |
# get keywords from file content
|
47 |
keywords_generator = KeywordsGenerator()
|
48 |
-
file[
|
|
|
|
|
49 |
return file
|
50 |
|
51 |
def __get_topics(self, file: dict):
|
52 |
# get topics from file content
|
53 |
topics_generator = TopicsGenerator()
|
54 |
-
file[
|
55 |
return file
|
56 |
|
57 |
def __get_embedding(self, file):
|
@@ -59,41 +66,54 @@ class WorkFlowController():
|
|
59 |
# return embedding
|
60 |
embedding_generator = EmbeddingGenerator()
|
61 |
|
62 |
-
for i, _ in enumerate(file[
|
63 |
# use i+1 to meet the index of file_content
|
64 |
-
file[
|
|
|
|
|
|
|
|
|
65 |
return file
|
66 |
-
|
67 |
|
68 |
def __translate_to_chinese(self, file: dict):
|
69 |
# translate file content to chinese
|
70 |
translator = Translator()
|
71 |
# reset the file full content
|
72 |
-
file[
|
73 |
|
74 |
-
for i, _ in enumerate(file[
|
75 |
# use i+1 to meet the index of file_content
|
76 |
-
file[
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return file
|
79 |
-
|
80 |
def __process_file(self, file: dict):
|
81 |
# process file content
|
82 |
# return processed data
|
83 |
-
if not file[
|
84 |
file = self.__translate_to_chinese(file)
|
85 |
file = self.__get_embedding(file)
|
86 |
file = self.__get_summary(file)
|
87 |
return file
|
88 |
|
89 |
def __dump_to_json(self):
|
90 |
-
with open(
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
json.dump(self.files_info, f, indent=4, ensure_ascii=False)
|
94 |
|
95 |
def __construct_knowledge_base_dataframe(self):
|
96 |
-
|
97 |
rows = []
|
98 |
for file_path, content in self.files_info.items():
|
99 |
file_full_content = content["file_full_content"]
|
@@ -107,15 +127,24 @@ class WorkFlowController():
|
|
107 |
}
|
108 |
rows.append(row)
|
109 |
|
110 |
-
columns = [
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
df = pd.DataFrame(rows, columns=columns)
|
112 |
return df
|
113 |
|
114 |
def __dump_to_csv(self):
|
115 |
df = self.__construct_knowledge_base_dataframe()
|
116 |
-
df.to_csv(os.path.join(os.getcwd(),
|
117 |
-
print(
|
118 |
-
|
|
|
|
|
|
|
119 |
|
120 |
def __get_file_name(self, file_src):
|
121 |
file_paths = [x.name for x in file_src]
|
@@ -127,4 +156,4 @@ class WorkFlowController():
|
|
127 |
while chunk := f.read(8192):
|
128 |
md5_hash.update(chunk)
|
129 |
|
130 |
-
return md5_hash.hexdigest()
|
|
|
5 |
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from .gpt_processor import (
|
9 |
+
EmbeddingGenerator,
|
10 |
+
KeywordsGenerator,
|
11 |
+
Summarizer,
|
12 |
+
TopicsGenerator,
|
13 |
+
Translator,
|
14 |
+
)
|
15 |
from .pdf_processor import PDFProcessor
|
16 |
|
17 |
processors = {
|
18 |
+
"pdf": PDFProcessor,
|
19 |
}
|
20 |
|
21 |
+
|
22 |
+
class WorkFlowController:
|
23 |
def __init__(self, file_src) -> None:
|
24 |
# check if the file_path is list
|
25 |
# self.file_paths = self.__get_file_name(file_src)
|
|
|
30 |
self.files_info = {}
|
31 |
|
32 |
for file_path in self.file_paths:
|
33 |
+
file_name = file_path.split("/")[-1]
|
34 |
+
file_format = file_path.split(".")[-1]
|
35 |
self.file_processor = processors[file_format]
|
36 |
file = self.file_processor(file_path).file_info
|
37 |
file = self.__process_file(file)
|
|
|
40 |
self.__dump_to_json()
|
41 |
self.__dump_to_csv()
|
42 |
|
|
|
43 |
def __get_summary(self, file: dict):
|
44 |
# get summary from file content
|
45 |
+
|
46 |
summarizer = Summarizer()
|
47 |
+
file["summarized_content"] = summarizer.summarize(file["file_full_content"])
|
48 |
return file
|
49 |
|
50 |
def __get_keywords(self, file: dict):
|
51 |
# get keywords from file content
|
52 |
keywords_generator = KeywordsGenerator()
|
53 |
+
file["keywords"] = keywords_generator.extract_keywords(
|
54 |
+
file["file_full_content"]
|
55 |
+
)
|
56 |
return file
|
57 |
|
58 |
def __get_topics(self, file: dict):
|
59 |
# get topics from file content
|
60 |
topics_generator = TopicsGenerator()
|
61 |
+
file["topics"] = topics_generator.extract_topics(file["file_full_content"])
|
62 |
return file
|
63 |
|
64 |
def __get_embedding(self, file):
|
|
|
66 |
# return embedding
|
67 |
embedding_generator = EmbeddingGenerator()
|
68 |
|
69 |
+
for i, _ in enumerate(file["file_content"]):
|
70 |
# use i+1 to meet the index of file_content
|
71 |
+
file["file_content"][i + 1][
|
72 |
+
"page_embedding"
|
73 |
+
] = embedding_generator.get_embedding(
|
74 |
+
file["file_content"][i + 1]["page_content"]
|
75 |
+
)
|
76 |
return file
|
|
|
77 |
|
78 |
def __translate_to_chinese(self, file: dict):
|
79 |
# translate file content to chinese
|
80 |
translator = Translator()
|
81 |
# reset the file full content
|
82 |
+
file["file_full_content"] = ""
|
83 |
|
84 |
+
for i, _ in enumerate(file["file_content"]):
|
85 |
# use i+1 to meet the index of file_content
|
86 |
+
file["file_content"][i + 1][
|
87 |
+
"page_content"
|
88 |
+
] = translator.translate_to_chinese(
|
89 |
+
file["file_content"][i + 1]["page_content"]
|
90 |
+
)
|
91 |
+
file["file_full_content"] = (
|
92 |
+
file["file_full_content"] + file["file_content"][i + 1]["page_content"]
|
93 |
+
)
|
94 |
return file
|
95 |
+
|
96 |
def __process_file(self, file: dict):
|
97 |
# process file content
|
98 |
# return processed data
|
99 |
+
if not file["is_chinese"]:
|
100 |
file = self.__translate_to_chinese(file)
|
101 |
file = self.__get_embedding(file)
|
102 |
file = self.__get_summary(file)
|
103 |
return file
|
104 |
|
105 |
def __dump_to_json(self):
|
106 |
+
with open(
|
107 |
+
os.path.join(os.getcwd(), "knowledge_base.json"), "w", encoding="utf-8"
|
108 |
+
) as f:
|
109 |
+
print(
|
110 |
+
"Dumping to json, the path is: "
|
111 |
+
+ os.path.join(os.getcwd(), "knowledge_base.json")
|
112 |
+
)
|
113 |
+
self.json_result_path = os.path.join(os.getcwd(), "knowledge_base.json")
|
114 |
json.dump(self.files_info, f, indent=4, ensure_ascii=False)
|
115 |
|
116 |
def __construct_knowledge_base_dataframe(self):
|
|
|
117 |
rows = []
|
118 |
for file_path, content in self.files_info.items():
|
119 |
file_full_content = content["file_full_content"]
|
|
|
127 |
}
|
128 |
rows.append(row)
|
129 |
|
130 |
+
columns = [
|
131 |
+
"file_name",
|
132 |
+
"page_num",
|
133 |
+
"page_content",
|
134 |
+
"page_embedding",
|
135 |
+
"file_full_content",
|
136 |
+
]
|
137 |
df = pd.DataFrame(rows, columns=columns)
|
138 |
return df
|
139 |
|
140 |
def __dump_to_csv(self):
|
141 |
df = self.__construct_knowledge_base_dataframe()
|
142 |
+
df.to_csv(os.path.join(os.getcwd(), "knowledge_base.csv"), index=False)
|
143 |
+
print(
|
144 |
+
"Dumping to csv, the path is: "
|
145 |
+
+ os.path.join(os.getcwd(), "knowledge_base.csv")
|
146 |
+
)
|
147 |
+
self.csv_result_path = os.path.join(os.getcwd(), "knowledge_base.csv")
|
148 |
|
149 |
def __get_file_name(self, file_src):
|
150 |
file_paths = [x.name for x in file_src]
|
|
|
156 |
while chunk := f.read(8192):
|
157 |
md5_hash.update(chunk)
|
158 |
|
159 |
+
return md5_hash.hexdigest()
|