Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,833 Bytes
85c849f f9bc6ea 85c849f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
import spaces
import timm
import json
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_unknown_breed_message,
format_not_dog_message,
format_hint_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from model_architecture import BaseModel, dog_breeds
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
history_manager = UserHistoryManager()
class ModelManager:
"""
Singleton class for managing model instances and device allocation
specifically designed for Hugging Face Spaces deployment.
"""
_instance = None
_initialized = False
_yolo_model = None
_breed_model = None
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not ModelManager._initialized:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ModelManager._initialized = True
@property
def device(self):
if self._device is None:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
return self._device
@property
def yolo_model(self):
if self._yolo_model is None:
self._yolo_model = YOLO('yolov8x.pt')
return self._yolo_model
@property
def breed_model(self):
if self._breed_model is None:
self._breed_model = BaseModel(
num_classes=len(dog_breeds),
device=self.device
).to(self.device)
checkpoint = torch.load(
'ConvNextV2Base_best_model.pth',
map_location=self.device
)
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
self._breed_model.eval()
return self._breed_model
# Initialize model manager
model_manager = ModelManager()
def preprocess_image(image):
"""Preprocesses images for model input"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
def predict_single_dog(image):
"""Predicts dog breed for a single image"""
image_tensor = preprocess_image(image).to(model_manager.device)
with torch.no_grad():
logits = model_manager.breed_model(image_tensor)[0]
probs = F.softmax(logits, dim=1)
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
sum_probs = sum(probabilities[:3])
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
return probabilities[0], breeds[:3], relative_probs
def enhanced_preprocess(image, is_standing=False, has_overlap=False):
"""
Enhanced image preprocessing function with special handling for different poses
and overlapping cases.
"""
target_size = 224
w, h = image.size
if is_standing:
if h > w * 1.5:
new_h = target_size
new_w = min(target_size, int(w * (target_size / h)))
new_w = max(new_w, int(target_size * 0.6))
elif has_overlap:
scale = min(target_size/w, target_size/h) * 0.95
new_w = int(w * scale)
new_h = int(h * scale)
else:
scale = min(target_size/w, target_size/h)
new_w = int(w * scale)
new_h = int(h * scale)
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
paste_x = (target_size - new_w) // 2
paste_y = (target_size - new_h) // 2
final_image.paste(resized, (paste_x, paste_y))
return final_image
@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
"""
Enhanced multiple dog detection with improved bounding box handling and
intelligent boundary adjustments.
"""
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
img_width, img_height = image.size
detected_boxes = []
# Phase 1: Initial detection and processing
for box in results.boxes:
if box.cls.item() == 16: # Dog class
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
x1, y1, x2, y2 = map(int, xyxy)
w = x2 - x1
h = y2 - y1
detected_boxes.append({
'coords': [x1, y1, x2, y2],
'width': w,
'height': h,
'center_x': (x1 + x2) / 2,
'center_y': (y1 + y2) / 2,
'area': w * h,
'confidence': confidence,
'aspect_ratio': w / h if h != 0 else 1
})
if not detected_boxes:
return [(image, 1.0, [0, 0, img_width, img_height], False)]
# Phase 2: Analysis of detection relationships
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
def calculate_iou(box1, box2):
x1 = max(box1['coords'][0], box2['coords'][0])
y1 = max(box1['coords'][1], box2['coords'][1])
x2 = min(box1['coords'][2], box2['coords'][2])
y2 = min(box1['coords'][3], box2['coords'][3])
if x2 <= x1 or y2 <= y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
area1 = box1['area']
area2 = box2['area']
return intersection / (area1 + area2 - intersection)
# Phase 3: Processing each detection
processed_boxes = []
overlap_threshold = 0.2
for i, box_info in enumerate(detected_boxes):
x1, y1, x2, y2 = box_info['coords']
w = box_info['width']
h = box_info['height']
center_x = box_info['center_x']
center_y = box_info['center_y']
# Check for overlaps
has_overlap = False
for j, other_box in enumerate(detected_boxes):
if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
has_overlap = True
break
# Adjust expansion strategy
base_expansion = 0.03
max_expansion = 0.05
is_standing = h > 1.5 * w
is_sitting = 0.8 <= h/w <= 1.2
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
if has_overlap:
h_expansion = w_expansion = base_expansion * 0.8
else:
if is_standing:
h_expansion = min(base_expansion * 1.2, max_expansion)
w_expansion = base_expansion
elif is_sitting:
h_expansion = w_expansion = base_expansion
else:
h_expansion = w_expansion = base_expansion * 0.9
# Position compensation
if center_x < img_width * 0.2 or center_x > img_width * 0.8:
w_expansion *= 0.9
if is_abnormal_size:
h_expansion *= 0.8
w_expansion *= 0.8
# Calculate final bounding box
expansion_w = w * w_expansion
expansion_h = h * h_expansion
new_x1 = max(0, center_x - (w + expansion_w)/2)
new_y1 = max(0, center_y - (h + expansion_h)/2)
new_x2 = min(img_width, center_x + (w + expansion_w)/2)
new_y2 = min(img_height, center_y + (h + expansion_h)/2)
# Crop and process image
cropped_image = image.crop((int(new_x1), int(new_y1),
int(new_x2), int(new_y2)))
processed_image = enhanced_preprocess(
cropped_image,
is_standing=is_standing,
has_overlap=has_overlap
)
processed_boxes.append((
processed_image,
box_info['confidence'],
[new_x1, new_y1, new_x2, new_y2],
True
))
return processed_boxes
@spaces.GPU
def predict(image):
"""
Main prediction function that handles both single and multiple dog detection.
Args:
image: PIL Image or numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
if image is None:
return format_hint_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 檢測圖片中的物體
dogs = detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# 準備標註
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# 處理每個檢測到的物體
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
print(f"Predict processing - Object {i+1}:")
print(f" Is dog: {is_dog}")
print(f" Detection confidence: {detection_confidence:.4f}")
# 如果是狗且進行品種預測,在這裡也加入打印語句
if is_dog:
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
print(f" Breed prediction - Top probability: {top1_prob:.4f}")
print(f" Top breeds: {topk_breeds[:3]}")
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# 繪製框和標籤
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# 繪製標籤背景和文字
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
try:
# 首先檢查是否為狗
if not is_dog:
dogs_info += format_not_dog_message(color, i+1)
continue
# 如果是狗,進行品種預測
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# 根據信心度決定輸出格式
if combined_confidence < 0.15:
dogs_info += format_unknown_breed_message(color, i+1)
elif top1_prob >= 0.4:
breed = topk_breeds[0]
description = get_dog_description(breed)
if description is None:
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_unknown_breed_message(color, i+1)
# 包裝最終的HTML輸出
html_output = format_multi_dog_container(dogs_info)
# 準備初始狀態
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_hint_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_hint_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
# Header HTML
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 先創建歷史組件實例(但不創建標籤頁)
history_component = create_history_component()
with gr.Tabs():
# 1. 品種檢測標籤頁
example_images = [
'Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'Samoyed.jpeg',
'French_Bulldog.jpeg'
]
detection_components = create_detection_tab(predict, example_images)
# 2. 品種比較標籤頁
comparison_components = create_comparison_tab(
dog_breeds=dog_breeds,
get_dog_description=get_dog_description,
breed_health_info=breed_health_info,
breed_noise_info=breed_noise_info
)
# 3. 品種推薦標籤頁
recommendation_components = create_recommendation_tab(
UserPreferences=UserPreferences,
get_breed_recommendations=get_breed_recommendations,
format_recommendation_html=format_recommendation_html,
history_component=history_component
)
# 4. 最後創建歷史記錄標籤頁
create_history_tab(history_component)
# Footer
gr.HTML('''
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 20px 0;
">
<p style="
font-family: 'Arial', sans-serif;
font-size: 14px;
font-weight: 500;
letter-spacing: 2px;
background: linear-gradient(90deg, #555, #007ACC);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
text-transform: uppercase;
display: inline-block;
">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
</a>
</div>
''')
return iface
if __name__ == "__main__":
iface = main()
iface.launch() |