DawnC commited on
Commit
85c849f
·
verified ·
1 Parent(s): 37f5b46

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +555 -0
app.py ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import gradio as gr
6
+ import time
7
+ import spaces
8
+ import timm
9
+ from torchvision.ops import nms, box_iou
10
+ import torch.nn.functional as F
11
+ from torchvision import transforms
12
+ from PIL import Image, ImageDraw, ImageFont, ImageFilter
13
+ from breed_health_info import breed_health_info
14
+ from breed_noise_info import breed_noise_info
15
+ from dog_database import get_dog_description
16
+ from scoring_calculation_system import UserPreferences
17
+ from recommendation_html_format import format_recommendation_html, get_breed_recommendations
18
+ from history_manager import UserHistoryManager
19
+ from search_history import create_history_tab, create_history_component
20
+ from styles import get_css_styles
21
+ from breed_detection import create_detection_tab
22
+ from breed_comparison import create_comparison_tab
23
+ from breed_recommendation import create_recommendation_tab
24
+ from html_templates import (
25
+ format_description_html,
26
+ format_single_dog_result,
27
+ format_multiple_breeds_result,
28
+ format_unknown_breed_message,
29
+ format_not_dog_message,
30
+ format_hint_html,
31
+ format_multi_dog_container,
32
+ format_breed_details_html,
33
+ get_color_scheme,
34
+ get_akc_breeds_link
35
+ )
36
+ from model_architecture import BaseModel, dog_breeds
37
+ from urllib.parse import quote
38
+ from ultralytics import YOLO
39
+ import asyncio
40
+ import traceback
41
+
42
+ history_manager = UserHistoryManager()
43
+
44
+ class ModelManager:
45
+ """
46
+ Singleton class for managing model instances and device allocation
47
+ specifically designed for Hugging Face Spaces deployment.
48
+ """
49
+ _instance = None
50
+ _initialized = False
51
+ _yolo_model = None
52
+ _breed_model = None
53
+ _device = None
54
+
55
+ def __new__(cls):
56
+ if cls._instance is None:
57
+ cls._instance = super().__new__(cls)
58
+ return cls._instance
59
+
60
+ def __init__(self):
61
+ if not ModelManager._initialized:
62
+ self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
63
+ ModelManager._initialized = True
64
+
65
+ @property
66
+ def device(self):
67
+ if self._device is None:
68
+ self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
69
+ return self._device
70
+
71
+ @property
72
+ def yolo_model(self):
73
+ if self._yolo_model is None:
74
+ self._yolo_model = YOLO('yolov8x.pt')
75
+ return self._yolo_model
76
+
77
+ @property
78
+ def breed_model(self):
79
+ if self._breed_model is None:
80
+ self._breed_model = BaseModel(
81
+ num_classes=len(dog_breeds),
82
+ device=self.device
83
+ ).to(self.device)
84
+
85
+ checkpoint = torch.load(
86
+ 'ConvNextV2Base_best_model.pth',
87
+ map_location=self.device
88
+ )
89
+ self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
90
+ self._breed_model.eval()
91
+ return self._breed_model
92
+
93
+ # Initialize model manager
94
+ model_manager = ModelManager()
95
+
96
+ def preprocess_image(image):
97
+ """Preprocesses images for model input"""
98
+ if isinstance(image, np.ndarray):
99
+ image = Image.fromarray(image)
100
+
101
+ transform = transforms.Compose([
102
+ transforms.Resize((224, 224)),
103
+ transforms.ToTensor(),
104
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
105
+ ])
106
+
107
+ return transform(image).unsqueeze(0)
108
+
109
+ @spaces.GPU
110
+ def predict_single_dog(image):
111
+ """Predicts dog breed for a single image"""
112
+ image_tensor = preprocess_image(image).to(model_manager.device)
113
+
114
+ with torch.no_grad():
115
+ logits = model_manager.breed_model(image_tensor)[0]
116
+ probs = F.softmax(logits, dim=1)
117
+
118
+ top5_prob, top5_idx = torch.topk(probs, k=5)
119
+ breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
120
+ probabilities = [prob.item() for prob in top5_prob[0]]
121
+
122
+ sum_probs = sum(probabilities[:3])
123
+ relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
124
+
125
+ return probabilities[0], breeds[:3], relative_probs
126
+
127
+ def enhanced_preprocess(image, is_standing=False, has_overlap=False):
128
+ """
129
+ Enhanced image preprocessing function with special handling for different poses
130
+ and overlapping cases.
131
+ """
132
+ target_size = 224
133
+ w, h = image.size
134
+
135
+ if is_standing:
136
+ if h > w * 1.5:
137
+ new_h = target_size
138
+ new_w = min(target_size, int(w * (target_size / h)))
139
+ new_w = max(new_w, int(target_size * 0.6))
140
+ elif has_overlap:
141
+ scale = min(target_size/w, target_size/h) * 0.95
142
+ new_w = int(w * scale)
143
+ new_h = int(h * scale)
144
+ else:
145
+ scale = min(target_size/w, target_size/h)
146
+ new_w = int(w * scale)
147
+ new_h = int(h * scale)
148
+
149
+ resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
150
+ final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
151
+ paste_x = (target_size - new_w) // 2
152
+ paste_y = (target_size - new_h) // 2
153
+ final_image.paste(resized, (paste_x, paste_y))
154
+
155
+ return final_image
156
+
157
+ @spaces.GPU
158
+ def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
159
+ """
160
+ Enhanced multiple dog detection with improved bounding box handling and
161
+ intelligent boundary adjustments.
162
+ """
163
+ results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
164
+ img_width, img_height = image.size
165
+ detected_boxes = []
166
+
167
+ # Phase 1: Initial detection and processing
168
+ for box in results.boxes:
169
+ if box.cls.item() == 16: # Dog class
170
+ xyxy = box.xyxy[0].tolist()
171
+ confidence = box.conf.item()
172
+ x1, y1, x2, y2 = map(int, xyxy)
173
+ w = x2 - x1
174
+ h = y2 - y1
175
+
176
+ detected_boxes.append({
177
+ 'coords': [x1, y1, x2, y2],
178
+ 'width': w,
179
+ 'height': h,
180
+ 'center_x': (x1 + x2) / 2,
181
+ 'center_y': (y1 + y2) / 2,
182
+ 'area': w * h,
183
+ 'confidence': confidence,
184
+ 'aspect_ratio': w / h if h != 0 else 1
185
+ })
186
+
187
+ if not detected_boxes:
188
+ return [(image, 1.0, [0, 0, img_width, img_height], False)]
189
+
190
+ # Phase 2: Analysis of detection relationships
191
+ avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
192
+ avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
193
+ avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
194
+
195
+ def calculate_iou(box1, box2):
196
+ x1 = max(box1['coords'][0], box2['coords'][0])
197
+ y1 = max(box1['coords'][1], box2['coords'][1])
198
+ x2 = min(box1['coords'][2], box2['coords'][2])
199
+ y2 = min(box1['coords'][3], box2['coords'][3])
200
+
201
+ if x2 <= x1 or y2 <= y1:
202
+ return 0.0
203
+
204
+ intersection = (x2 - x1) * (y2 - y1)
205
+ area1 = box1['area']
206
+ area2 = box2['area']
207
+ return intersection / (area1 + area2 - intersection)
208
+
209
+ # Phase 3: Processing each detection
210
+ processed_boxes = []
211
+ overlap_threshold = 0.2
212
+
213
+ for i, box_info in enumerate(detected_boxes):
214
+ x1, y1, x2, y2 = box_info['coords']
215
+ w = box_info['width']
216
+ h = box_info['height']
217
+ center_x = box_info['center_x']
218
+ center_y = box_info['center_y']
219
+
220
+ # Check for overlaps
221
+ has_overlap = False
222
+ for j, other_box in enumerate(detected_boxes):
223
+ if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
224
+ has_overlap = True
225
+ break
226
+
227
+ # Adjust expansion strategy
228
+ base_expansion = 0.03
229
+ max_expansion = 0.05
230
+
231
+ is_standing = h > 1.5 * w
232
+ is_sitting = 0.8 <= h/w <= 1.2
233
+ is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
234
+
235
+ if has_overlap:
236
+ h_expansion = w_expansion = base_expansion * 0.8
237
+ else:
238
+ if is_standing:
239
+ h_expansion = min(base_expansion * 1.2, max_expansion)
240
+ w_expansion = base_expansion
241
+ elif is_sitting:
242
+ h_expansion = w_expansion = base_expansion
243
+ else:
244
+ h_expansion = w_expansion = base_expansion * 0.9
245
+
246
+ # Position compensation
247
+ if center_x < img_width * 0.2 or center_x > img_width * 0.8:
248
+ w_expansion *= 0.9
249
+
250
+ if is_abnormal_size:
251
+ h_expansion *= 0.8
252
+ w_expansion *= 0.8
253
+
254
+ # Calculate final bounding box
255
+ expansion_w = w * w_expansion
256
+ expansion_h = h * h_expansion
257
+
258
+ new_x1 = max(0, center_x - (w + expansion_w)/2)
259
+ new_y1 = max(0, center_y - (h + expansion_h)/2)
260
+ new_x2 = min(img_width, center_x + (w + expansion_w)/2)
261
+ new_y2 = min(img_height, center_y + (h + expansion_h)/2)
262
+
263
+ # Crop and process image
264
+ cropped_image = image.crop((int(new_x1), int(new_y1),
265
+ int(new_x2), int(new_y2)))
266
+
267
+ processed_image = enhanced_preprocess(
268
+ cropped_image,
269
+ is_standing=is_standing,
270
+ has_overlap=has_overlap
271
+ )
272
+
273
+ processed_boxes.append((
274
+ processed_image,
275
+ box_info['confidence'],
276
+ [new_x1, new_y1, new_x2, new_y2],
277
+ True
278
+ ))
279
+
280
+ return processed_boxes
281
+
282
+ @spaces.GPU
283
+ def predict(image):
284
+ """
285
+ Main prediction function that handles both single and multiple dog detection.
286
+ Args:
287
+ image: PIL Image or numpy array
288
+ Returns:
289
+ tuple: (html_output, annotated_image, initial_state)
290
+ """
291
+ if image is None:
292
+ return format_hint_html("Please upload an image to start."), None, None
293
+
294
+ try:
295
+ if isinstance(image, np.ndarray):
296
+ image = Image.fromarray(image)
297
+
298
+ # 檢測圖片中的物體
299
+ dogs = detect_multiple_dogs(image)
300
+ color_scheme = get_color_scheme(len(dogs) == 1)
301
+
302
+ # 準備標註
303
+ annotated_image = image.copy()
304
+ draw = ImageDraw.Draw(annotated_image)
305
+
306
+ try:
307
+ font = ImageFont.truetype("arial.ttf", 24)
308
+ except:
309
+ font = ImageFont.load_default()
310
+
311
+ dogs_info = ""
312
+
313
+ # 處理每個檢測到的物體
314
+ for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
315
+ print(f"Predict processing - Object {i+1}:")
316
+ print(f" Is dog: {is_dog}")
317
+ print(f" Detection confidence: {detection_confidence:.4f}")
318
+
319
+ # 如果是狗且進行品種預測,在這裡也加入打印語句
320
+ if is_dog:
321
+ top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
322
+ print(f" Breed prediction - Top probability: {top1_prob:.4f}")
323
+ print(f" Top breeds: {topk_breeds[:3]}")
324
+ color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
325
+
326
+ # 繪製框和標籤
327
+ draw.rectangle(box, outline=color, width=4)
328
+ label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
329
+ label_bbox = draw.textbbox((0, 0), label, font=font)
330
+ label_width = label_bbox[2] - label_bbox[0]
331
+ label_height = label_bbox[3] - label_bbox[1]
332
+
333
+ # 繪製標籤背景和文字
334
+ label_x = box[0] + 5
335
+ label_y = box[1] + 5
336
+ draw.rectangle(
337
+ [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
338
+ fill='white',
339
+ outline=color,
340
+ width=2
341
+ )
342
+ draw.text((label_x, label_y), label, fill=color, font=font)
343
+
344
+ try:
345
+ # 首先檢查是否為狗
346
+ if not is_dog:
347
+ dogs_info += format_not_dog_message(color, i+1)
348
+ continue
349
+
350
+ # 如果是狗,進行品種預測
351
+ top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
352
+ combined_confidence = detection_confidence * top1_prob
353
+
354
+ # 根據信心度決定輸出格式
355
+ if combined_confidence < 0.15:
356
+ dogs_info += format_unknown_breed_message(color, i+1)
357
+ elif top1_prob >= 0.4:
358
+ breed = topk_breeds[0]
359
+ description = get_dog_description(breed)
360
+ if description is None:
361
+ description = {
362
+ "Name": breed,
363
+ "Size": "Unknown",
364
+ "Exercise Needs": "Unknown",
365
+ "Grooming Needs": "Unknown",
366
+ "Care Level": "Unknown",
367
+ "Good with Children": "Unknown",
368
+ "Description": f"Identified as {breed.replace('_', ' ')}"
369
+ }
370
+ dogs_info += format_single_dog_result(breed, description, color)
371
+ else:
372
+ dogs_info += format_multiple_breeds_result(
373
+ topk_breeds,
374
+ relative_probs,
375
+ color,
376
+ i+1,
377
+ lambda breed: get_dog_description(breed) or {
378
+ "Name": breed,
379
+ "Size": "Unknown",
380
+ "Exercise Needs": "Unknown",
381
+ "Grooming Needs": "Unknown",
382
+ "Care Level": "Unknown",
383
+ "Good with Children": "Unknown",
384
+ "Description": f"Identified as {breed.replace('_', ' ')}"
385
+ }
386
+ )
387
+ except Exception as e:
388
+ print(f"Error formatting results for dog {i+1}: {str(e)}")
389
+ dogs_info += format_unknown_breed_message(color, i+1)
390
+
391
+ # 包裝最終的HTML輸出
392
+ html_output = format_multi_dog_container(dogs_info)
393
+
394
+ # 準備初始狀態
395
+ initial_state = {
396
+ "dogs_info": dogs_info,
397
+ "image": annotated_image,
398
+ "is_multi_dog": len(dogs) > 1,
399
+ "html_output": html_output
400
+ }
401
+
402
+ return html_output, annotated_image, initial_state
403
+
404
+ except Exception as e:
405
+ error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
406
+ print(error_msg)
407
+ return format_hint_html(error_msg), None, None
408
+
409
+
410
+ def show_details_html(choice, previous_output, initial_state):
411
+ """
412
+ Generate detailed HTML view for a selected breed.
413
+ Args:
414
+ choice: str, Selected breed option
415
+ previous_output: str, Previous HTML output
416
+ initial_state: dict, Current state information
417
+ Returns:
418
+ tuple: (html_output, gradio_update, updated_state)
419
+ """
420
+ if not choice:
421
+ return previous_output, gr.update(visible=True), initial_state
422
+
423
+ try:
424
+ breed = choice.split("More about ")[-1]
425
+ description = get_dog_description(breed)
426
+ html_output = format_breed_details_html(description, breed)
427
+
428
+ # Update state
429
+ initial_state["current_description"] = html_output
430
+ initial_state["original_buttons"] = initial_state.get("buttons", [])
431
+
432
+ return html_output, gr.update(visible=True), initial_state
433
+
434
+ except Exception as e:
435
+ error_msg = f"An error occurred while showing details: {e}"
436
+ print(error_msg)
437
+ return format_hint_html(error_msg), gr.update(visible=True), initial_state
438
+
439
+
440
+ def get_pwa_html():
441
+ return """
442
+ <!DOCTYPE html>
443
+ <meta charset="UTF-8">
444
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
445
+ <meta name="apple-mobile-web-app-capable" content="yes">
446
+ <meta name="apple-mobile-web-app-status-bar-style" content="black">
447
+ <meta name="theme-color" content="#4299e1">
448
+ <link rel="manifest" href="./manifest.json">
449
+ <link rel="apple-touch-icon" href="./icon-192.png">
450
+ <script>
451
+ if ('serviceWorker' in navigator) {
452
+ window.addEventListener('load', function() {
453
+ navigator.serviceWorker.register('./service-worker.js')
454
+ .then(function(registration) {
455
+ console.log('Service Worker 註冊成功,範圍:',
456
+ registration.scope);
457
+ })
458
+ .catch(function(error) {
459
+ console.error('Service Worker 註冊失敗:',
460
+ error.message);
461
+ });
462
+ });
463
+ }
464
+ </script>
465
+ """
466
+
467
+ def main():
468
+ with gr.Blocks(css=get_css_styles()) as iface:
469
+
470
+ gr.HTML(get_pwa_html())
471
+
472
+ # Header HTML
473
+ gr.HTML("""
474
+ <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
475
+ <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
476
+ 🐾 PawMatch AI
477
+ </h1>
478
+ <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
479
+ Your Smart Dog Breed Guide
480
+ </h2>
481
+ <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
482
+ <p style='color: #718096; font-size: 0.9em;'>
483
+ Powered by AI • Breed Recognition • Smart Matching • Companion Guide
484
+ </p>
485
+ </header>
486
+ """)
487
+
488
+ # 先創建歷史組件實例(但不創建標籤頁)
489
+ history_component = create_history_component()
490
+
491
+ with gr.Tabs():
492
+ # 1. 品種檢測標籤頁
493
+ example_images = [
494
+ 'Border_Collie.jpg',
495
+ 'Golden_Retriever.jpeg',
496
+ 'Saint_Bernard.jpeg',
497
+ 'Samoyed.jpeg',
498
+ 'French_Bulldog.jpeg'
499
+ ]
500
+ detection_components = create_detection_tab(predict, example_images)
501
+
502
+ # 2. 品種比較標籤頁
503
+ comparison_components = create_comparison_tab(
504
+ dog_breeds=dog_breeds,
505
+ get_dog_description=get_dog_description,
506
+ breed_health_info=breed_health_info,
507
+ breed_noise_info=breed_noise_info
508
+ )
509
+
510
+ # 3. 品種推薦標籤頁
511
+ recommendation_components = create_recommendation_tab(
512
+ UserPreferences=UserPreferences,
513
+ get_breed_recommendations=get_breed_recommendations,
514
+ format_recommendation_html=format_recommendation_html,
515
+ history_component=history_component
516
+ )
517
+
518
+
519
+ # 4. 最後創建歷史記錄標籤頁
520
+ create_history_tab(history_component)
521
+
522
+ # Footer
523
+ gr.HTML('''
524
+ <div style="
525
+ display: flex;
526
+ align-items: center;
527
+ justify-content: center;
528
+ gap: 20px;
529
+ padding: 20px 0;
530
+ ">
531
+ <p style="
532
+ font-family: 'Arial', sans-serif;
533
+ font-size: 14px;
534
+ font-weight: 500;
535
+ letter-spacing: 2px;
536
+ background: linear-gradient(90deg, #555, #007ACC);
537
+ -webkit-background-clip: text;
538
+ -webkit-text-fill-color: transparent;
539
+ margin: 0;
540
+ text-transform: uppercase;
541
+ display: inline-block;
542
+ ">EXPLORE THE CODE →</p>
543
+ <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
544
+ <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
545
+ </a>
546
+ </div>
547
+ ''')
548
+
549
+ gr.HTML("</body></html>")
550
+
551
+ return iface
552
+
553
+ if __name__ == "__main__":
554
+ iface = main()
555
+ iface.launch()